
Reinforcement Learning Toolbox™
User's Guide

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Reinforcement Learning Toolbox™ User's Guide
© COPYRIGHT 2019- 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Getting Started
1

Reinforcement Learning Toolbox Product Description 1-2

What Is Reinforcement Learning? . 1-3
Reinforcement Learning Workflow . 1-4

Reinforcement Learning for Control Systems Applications 1-6

Train Reinforcement Learning Agent in Basic Grid World 1-8

Train Reinforcement Learning Agent in MDP Environment 1-14

Create Simulink Environment and Train Agent . 1-19

Create Environments
2

Create MATLAB Environments for Reinforcement Learning 2-2
Action and Observation Signals . 2-2
Predefined MATLAB Environments . 2-3
Custom MATLAB Environments . 2-3

Create Simulink Environments for Reinforcement Learning 2-5
Action and Observation Signals . 2-5
Predefined Simulink Environments . 2-6
Custom Simulink Environments . 2-6

Define Reward Signals . 2-7
Continuous Rewards . 2-7
Discrete Rewards . 2-8
Mixed Rewards . 2-8

Load Predefined Grid World Environments . 2-9
Basic Grid World . 2-9
Deterministic Waterfall Grid Worlds . 2-10
Stochastic Waterfall Grid Worlds . 2-12

Load Predefined Control System Environments . 2-15
Cart-Pole Environments . 2-15
Double Integrator Environments . 2-17
Simple Pendulum Environments with Image Observation 2-19

iii

Contents

Load Predefined Simulink Environments . 2-22
Simple Pendulum Simulink Model . 2-22
Cart-Pole Simscape Model . 2-24

Create Custom Grid World Environments . 2-28
Grid World Model . 2-28
Grid World Environment . 2-32

Create MATLAB Environment Using Custom Functions 2-33

Create Custom MATLAB Environment from Template 2-40
Create Template Class . 2-40
Environment Properties . 2-40
Required Functions . 2-41
Optional Functions . 2-43
Environment Visualization . 2-44
Create Custom Environment . 2-45

Water Tank Reinforcement Learning Environment Model 2-46

Create Agents
3

Reinforcement Learning Agents . 3-2
Built-In Agents . 3-3
Choose the Type of Agent . 3-4
Custom Agents . 3-5

Q-Learning Agents . 3-6
Critic Function . 3-6
Agent Creation . 3-6
Training Algorithm . 3-6

SARSA Agents . 3-8
Critic Function . 3-8
Agent Creation . 3-8
Training Algorithm . 3-8

Deep Q-Network Agents . 3-10
Critic Function . 3-10
Agent Creation . 3-10
Training Algorithm . 3-11
Target Update Methods . 3-12

Policy Gradient Agents . 3-13
Actor and Critic Functions . 3-13
Agent Creation . 3-13
Training Algorithm . 3-14

Deep Deterministic Policy Gradient Agents . 3-17
Actor and Critic Functions . 3-17
Agent Creation . 3-17

iv Contents

Training Algorithm . 3-18
Target Update Methods . 3-19

Twin-Delayed Deep Deterministic Policy Gradient Agents 3-21
Actor and Critic Functions . 3-21
Agent Creation . 3-22
Training Algorithm . 3-22
Target Update Methods . 3-24

Actor-Critic Agents . 3-25
Actor and Critic Functions . 3-25
Agent Creation . 3-25
Training Algorithm . 3-26

Proximal Policy Optimization Agents . 3-28
Actor and Critic Functions . 3-28
Agent Creation . 3-28
Training Algorithm . 3-29

Soft Actor-Critic Agents . 3-32
Actor and Critic Functions . 3-32
Agent Creation . 3-33
Training Algorithm . 3-34
Target Update Methods . 3-35

Custom Agents . 3-37
Create Template Class . 3-37
Agent Properties . 3-37
Constructor Function . 3-38
Actor and Critic Representations . 3-39
Required Functions . 3-39
Optional Functions . 3-42
Create Custom Agent . 3-42

Define Policies and Value Functions
4

Create Policy and Value Function Representations 4-2
Actors and Critic Representations . 4-2
Table Approximators . 4-4
Deep Neural Network Approximators . 4-4
Custom Basis Function Approximators . 4-9
Create an Agent or Specify Agent Representations 4-9

Import Policy and Value Function Representations 4-11
Import Actor and Critic for Image Observation Application 4-11

v

Train and Validate Agents
5

Train Reinforcement Learning Agents . 5-2
Training Algorithm . 5-2
Episode Manager . 5-3
Save Candidate Agents . 5-4
Parallel Computing . 5-4
GPU Acceleration . 5-6
Validate Trained Policy . 5-6
Environment Visualization . 5-6

Train DQN Agent to Balance Cart-Pole System . 5-8

Train PG Agent to Balance Cart-Pole System . 5-14

Train AC Agent to Balance Cart-Pole System . 5-19

Train PG Agent with Baseline to Control Double Integrator System . . . 5-25

Train DDPG Agent to Control Double Integrator System 5-31

Train DQN Agent to Swing Up and Balance Pendulum 5-37

Train DDPG Agent to Swing Up and Balance Pendulum 5-44

Train DDPG Agent to Swing Up and Balance Cart-Pole System 5-51

Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal
. 5-58

Train DDPG Agent to Swing Up and Balance Pendulum with Image
Observation . 5-65

Create Agent Using Deep Network Designer and Train Using Image
Observations . 5-73

Train AC Agent to Balance Cart-Pole System Using Parallel Computing
. 5-85

Train DDPG Agent to Control Flying Robot . 5-90

Train PPO Agent to Land Rocket . 5-96

Train Multiple Agents to Perform Collaborative Task 5-102

Train Multiple Agents for Area Coverage . 5-110

Train Multiple Agents for Path Following Control 5-117

Train DDPG Agent for Adaptive Cruise Control 5-126

Train DQN Agent for Lane Keeping Assist . 5-134

vi Contents

Train PPO Agent for Automatic Parking Valet . 5-142

Train DDPG Agent for Path-Following Control . 5-152

Train DQN Agent for Lane Keeping Assist Using Parallel Computing . 5-160

Train Biped Robot to Walk Using Reinforcement Learning Agents . . . 5-168

Quadruped Robot Locomotion Using DDPG Agent 5-179

Train DDPG Agent for PMSM Control . 5-187

Imitate MPC Controller for Lane Keeping Assist 5-193

Train DDPG Agent with Pretrained Actor Network 5-201

Imitate Nonlinear MPC Controller for Flying Robot 5-209

Tune PI Controller using Reinforcement Learning 5-217

Train Custom LQR Agent . 5-227

Train Reinforcement Learning Policy Using Custom Training Loop . . . 5-231

Create Agent for Custom Reinforcement Learning Algorithm 5-240

Deploy Trained Policies
6

Deploy Trained Reinforcement Learning Policies . 6-2
Generate Code Using GPU Coder . 6-2
Generate Code Using MATLAB Coder . 6-3

vii

Getting Started

• “Reinforcement Learning Toolbox Product Description” on page 1-2
• “What Is Reinforcement Learning?” on page 1-3
• “Reinforcement Learning for Control Systems Applications” on page 1-6
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-8
• “Train Reinforcement Learning Agent in MDP Environment” on page 1-14
• “Create Simulink Environment and Train Agent” on page 1-19

1

Reinforcement Learning Toolbox Product Description
Design and train policies using reinforcement learning

Reinforcement Learning Toolbox™ provides functions and blocks for training policies using
reinforcement learning algorithms including DQN, A2C, and DDPG. You can use these policies to
implement controllers and decision-making algorithms for complex systems such as robots and
autonomous systems. You can implement the policies using deep neural networks, polynomials, or
look-up tables.

The toolbox lets you train policies by enabling them to interact with environments represented by
MATLAB® or Simulink® models. You can evaluate algorithms, experiment with hyperparameter
settings, and monitor training progress. To improve training performance, you can run simulations in
parallel on the cloud, computer clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB
Parallel Server™).

Through the ONNX™ model format, existing policies can be imported from deep learning frameworks
such as TensorFlow™ Keras and PyTorch (with Deep Learning Toolbox™). You can generate optimized
C, C++, and CUDA code to deploy trained policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement learning to design controllers for
robotics and automated driving applications.

1 Getting Started

1-2

What Is Reinforcement Learning?
Reinforcement learning is a goal-directed computational approach where a computer learns to
perform a task by interacting with an unknown dynamic environment. This learning approach enables
a computer to make a series of decisions to maximize the cumulative reward for the task without
human intervention and without being explicitly programmed to achieve the task. The following
diagram shows a general representation of a reinforcement learning scenario.

The goal of reinforcement learning is to train an agent to complete a task within an unknown
environment. The agent receives observations and a reward from the environment and sends actions
to the environment. The reward is a measure of how successful an action is with respect to
completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and reward. The goal of the learning algorithm is to find an optimal policy that
maximizes the cumulative reward received during the task.

In other words, reinforcement learning involves an agent learning the optimal behavior through
repeated trial-and-error interactions with the environment without human involvement.

As an example, consider the task of parking a vehicle using an automated driving system. The goal of
this task is for the vehicle computer (agent) to park the vehicle in the correct position and

 What Is Reinforcement Learning?

1-3

orientation. To do so, the controller uses readings from cameras, accelerometers, gyroscopes, a GPS
receiver, and lidar (observations) to generate steering, braking, and acceleration commands
(actions). The action commands are sent to the actuators that control the vehicle. The resulting
observations depend on the actuators, sensors, vehicle dynamics, road surface, wind, and many other
less-important factors. All these factors, that is, everything that is not the agent, make up the
environment in reinforcement learning.

To learn how to generate the correct actions from the observations, the computer repeatedly tries to
park the vehicle using a trial-and-error process. To guide the learning process, you provide a signal
that is one when the car successfully reaches the desired position and orientation and zero otherwise
(reward). During each trial, the computer selects actions using a mapping (policy) initialized with
some default values. After each trial, the computer updates the mapping to maximize the reward
(learning algorithm). This process continues until the computer learns an optimal mapping that
successfully parks the car.

Reinforcement Learning Workflow
The general workflow for training an agent using reinforcement learning includes the following steps.

1 Formulate Problem — Define the task for the agent to learn, including how the agent interacts
with the environment and any primary and secondary goals the agent must achieve.

2 Create Environment — Define the environment within which the agent operates, including the
interface between agent and environment and the environment dynamic model. For more
information, see “Create MATLAB Environments for Reinforcement Learning” on page 2-2 and
“Create Simulink Environments for Reinforcement Learning” on page 2-5.

3 Define Reward — Specify the reward signal that the agent uses to measure its performance
against the task goals and how this signal is calculated from the environment. For more
information, see “Define Reward Signals” on page 2-7.

4 Create Agent — Create the agent, which includes defining a policy representation and
configuring the agent learning algorithm. For more information, see “Create Policy and Value
Function Representations” on page 4-2 and “Reinforcement Learning Agents” on page 3-2.

5 Train Agent — Train the agent policy representation using the defined environment, reward,
and agent learning algorithm. For more information, see “Train Reinforcement Learning Agents”
on page 5-2.

6 Validate Agent — Evaluate the performance of the trained agent by simulating the agent and
environment together. For more information, see “Train Reinforcement Learning Agents” on page
5-2.

1 Getting Started

1-4

7 Deploy Policy — Deploy the trained policy representation using, for example, generated GPU
code. For more information, see “Deploy Trained Reinforcement Learning Policies” on page 6-
2.

Training an agent using reinforcement learning is an iterative process. Decisions and results in later
stages can require you to return to an earlier stage in the learning workflow. For example, if the
training process does not converge to an optimal policy within a reasonable amount of time, you
might have to update any of the following before retraining the agent:

• Training settings
• Learning algorithm configuration
• Policy representation
• Reward signal definition
• Action and observation signals
• Environment dynamics

See Also

More About
• “Reinforcement Learning for Control Systems Applications” on page 1-6
• “Create Simulink Environment and Train Agent” on page 1-19

 What Is Reinforcement Learning?

1-5

Reinforcement Learning for Control Systems Applications
The behavior of a reinforcement learning policy—that is, how the policy observes the environment
and generates actions to complete a task in an optimal manner—is similar to the operation of a
controller in a control system. Reinforcement learning can be translated to a control system
representation using the following mapping.

Reinforcement Learning Control Systems
Policy Controller

1 Getting Started

1-6

Reinforcement Learning Control Systems
Environment Everything that is not the controller — In the preceding diagram, the

environment includes the plant, the reference signal, and the
calculation of the error. In general, the environment can also include
additional elements, such as:

• Measurement noise
• Disturbance signals
• Filters
• Analog-to-digital and digital-to-analog converters

Observation Any measurable value from the environment that is visible to the agent
— In the preceding diagram, the controller can see the error signal
from the environment. You can also create agents that observe, for
example, the reference signal, measurement signal, and measurement
signal rate of change.

Action Manipulated variables or control actions
Reward Function of the measurement, error signal, or some other performance

metric — For example, you can implement reward functions that
minimize the steady-state error while minimizing control effort.

Learning Algorithm Adaptation mechanism of an adaptive controller

Many control problems encountered in areas such as robotics and automated driving require
complex, nonlinear control architectures. Techniques such as gain scheduling, robust control, and
nonlinear model predictive control (MPC) can be used for these problems, but often require
significant domain expertise from the control engineer. For example, gains and parameters are
difficult to tune. The resulting controllers can pose implementation challenges, such as the
computational intensity of nonlinear MPC.

You can use deep neural networks, trained using reinforcement learning, to implement such complex
controllers. These systems can be self-taught without intervention from an expert control engineer.
Also, once the system is trained, you can deploy the reinforcement learning policy in a
computationally efficient way.

You can also use reinforcement learning to create an end-to-end controller that generates actions
directly from raw data, such as images. This approach is attractive for video-intensive applications,
such as automated driving, since you do not have to manually define and select image features.

See Also

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Define Reward Signals” on page 2-7

 Reinforcement Learning for Control Systems Applications

1-7

Train Reinforcement Learning Agent in Basic Grid World
This example shows how to solve a grid world environment using reinforcement learning by training
Q-learning and SARSA agents. For more information on these agents, see “Q-Learning Agents” on
page 3-6 and “SARSA Agents” on page 3-8.

This grid world environment has the following configuration and rules:

1 The grid world is 5-by-5 and bounded by borders, with four possible actions (North = 1, South =
2, East = 3, West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives a reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with a reward of +5.
5 The agent is blocked by obstacles (black cells).
6 All other actions result in –1 reward.

Create Grid World Environment

Create the basic grid world environment.

env = rlPredefinedEnv("BasicGridWorld");

To specify that the initial state of the agent is always [2,1], create a reset function that returns the
state number for the initial agent state. This function is called at the start of each training episode

1 Getting Started

1-8

and simulation. States are numbered starting at position [1,1]. The state number increases as you
move down the first column and then down each subsequent column. Therefore, create an anonymous
function handle that sets the initial state to 2.

env.ResetFcn = @() 2;

Fix the random generator seed for reproducibility.

rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action specifications
from the grid world environment. Set the learning rate of the representation to 1.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
qRepresentation = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));
qRepresentation.Options.LearnRate = 1;

Next, create a Q-learning agent using this table representation and configure the epsilon-greedy
exploration. For more information on creating Q-learning agents, see rlQAgent and
rlQAgentOptions.

agentOpts = rlQAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = .04;
qAgent = rlQAgent(qRepresentation,agentOpts);

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following options:

• Train for at most 200 episodes. Specify that each episode lasts for most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10 over 30

consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes= 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 11;
trainOpts.ScoreAveragingWindowLength = 30;

Train the Q-learning agent using the train function. Training can take several minutes to complete.
To save time while running this example, load a pretrained agent by setting doTraining to false.
To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(qAgent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('basicGWQAgent.mat','qAgent')
end

 Train Reinforcement Learning Agent in Basic Grid World

1-9

The Episode Manager window opens and displays the training progress.

Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment.

Before running the simulation, visualize the environment and configure the visualization to maintain a
trace of the agent states.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment using the sim function.

sim(qAgent,env)

1 Getting Started

1-10

The agent trace shows that the agent successfully finds the jump from cell [2,4] to cell [4,4].

Create and Train SARSA Agent

To create a SARSA agent, use the same Q table representation and epsilon-greedy configuration as
for the Q-learning agent. For more information on creating SARSA agents, see rlSARSAAgent and
rlSARSAAgentOptions.

agentOpts = rlSARSAAgentOptions;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.04;
sarsaAgent = rlSARSAAgent(qRepresentation,agentOpts);

Train the SARSA agent using the train function. Training can take several minutes to complete. To
save time while running this example, load a pretrained agent by setting doTraining to false. To
train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(sarsaAgent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('basicGWSarsaAgent.mat','sarsaAgent')
end

 Train Reinforcement Learning Agent in Basic Grid World

1-11

Validate SARSA Training

To validate the training results, simulate the agent in the training environment.

plot(env)
env.Model.Viewer.ShowTrace = true;
env.Model.Viewer.clearTrace;

Simulate the agent in the environment.

sim(sarsaAgent,env)

1 Getting Started

1-12

The SARSA agent finds the same grid world solution as the Q-learning agent.

See Also
createGridWorld | rlMDPEnv

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

 Train Reinforcement Learning Agent in Basic Grid World

1-13

Train Reinforcement Learning Agent in MDP Environment
This example shows how to train a Q-learning agent to solve a generic Markov decision process
(MDP) environment. For more information on these agents, see “Q-Learning Agents” on page 3-6.

The MDP environment has the following graph.

Here:

1 Each circle represents a state.
2 At each state there is a decision to go up or down.
3 The agent begins from state 1.
4 The agent receives a reward equal to the value on each transition in the graph.
5 The training goal is to collect the maximum cumulative reward.

Create MDP Environment

Create an MDP model with eight states and two actions ("up" and "down").

MDP = createMDP(8,["up";"down"]);

To model the transitions from the above graph, modify the state transition matrix and reward matrix
of the MDP. By default, these matrices contain zeros. For more information on creating an MDP model
and the properties of an MDP object, see createMDP.

Specify the state transition and reward matrices for the MDP. For example, in the following
commands:

• The first two lines specify the transition from state 1 to state 2 by taking action 1 ("up") and a
reward of +3 for this transition.

• The next two lines specify the transition from state 1 to state 3 by taking action 2 ("down") and a
reward of +1 for this transition.

1 Getting Started

1-14

MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;

Similarly, specify the state transitions and rewards for the remaining rules in the graph.

% State 2 transition and reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;
% State 3 transition and reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;
% State 4 transition and reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;
% State 5 transition and reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
% State 6 transition and reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;
% State 7 transition and reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;
% State 8 transition and reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify states "s7" and "s8" as terminal states of the MDP.

MDP.TerminalStates = ["s7";"s8"];

Create the reinforcement learning MDP environment for this process model.

env = rlMDPEnv(MDP);

To specify that the initial state of the agent is always state 1, specify a reset function that returns the
initial agent state. This function is called at the start of each training episode and simulation. Create
an anonymous function handle that sets the initial state to 1.

env.ResetFcn = @() 1;

Fix the random generator seed for reproducibility.

 Train Reinforcement Learning Agent in MDP Environment

1-15

rng(0)

Create Q-Learning Agent

To create a Q-learning agent, first create a Q table using the observation and action specifications
from the MDP environment. Set the learning rate of the representation to 1.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
qTable = rlTable(obsInfo, actInfo);
qRepresentation = rlQValueRepresentation(qTable, obsInfo, actInfo);
qRepresentation.Options.LearnRate = 1;

Next, create a Q-learning agent using this table representation, configuring the epsilon-greedy
exploration. For more information on creating Q-learning agents, see rlQAgent and
rlQAgentOptions.

agentOpts = rlQAgentOptions;
agentOpts.DiscountFactor = 1;
agentOpts.EpsilonGreedyExploration.Epsilon = 0.9;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 0.01;
qAgent = rlQAgent(qRepresentation,agentOpts);

Train Q-Learning Agent

To train the agent, first specify the training options. For this example, use the following options:

• Train for at most 200 episodes, with each episode lasting at most 50 time steps.
• Stop training when the agent receives an average cumulative reward greater than 10 over 30

consecutive episodes.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 200;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 13;
trainOpts.ScoreAveragingWindowLength = 30;

Train the agent using the train function. This may take several minutes to complete. To save time
while running this example, load a pretrained agent by setting doTraining to false. To train the
agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(qAgent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('genericMDPQAgent.mat','qAgent');
end

1 Getting Started

1-16

Validate Q-Learning Results

To validate the training results, simulate the agent in the training environment using the sim
function. The agent successfully finds the optimal path which results in cumulative reward of 13.

Data = sim(qAgent,env);
cumulativeReward = sum(Data.Reward)

cumulativeReward = 13

Since the discount factor is set to 1, the values in the Q table of the trained agent match the
undiscounted returns of the environment.

QTable = getLearnableParameters(getCritic(qAgent));
QTable{1}

ans = 8×2

 13 12
 5 10
 11 9
 3 2
 1 9
 5 1
 0 0
 0 0

TrueTableValues = [13,12;5,10;11,9;3,2;1,9;5,1;0,0;0,0]

 Train Reinforcement Learning Agent in MDP Environment

1-17

TrueTableValues = 8×2

 13 12
 5 10
 11 9
 3 2
 1 9
 5 1
 0 0
 0 0

See Also
createMDP | rlMDPEnv

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

1 Getting Started

1-18

Create Simulink Environment and Train Agent
This example shows how to convert the PI controller in the watertank Simulink® model to a
reinforcement learning deep deterministic policy gradient (DDPG) agent. For an example that trains a
DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double Integrator System” on page 5-
31.

Water Tank Model

The original model for this example is the water tank model. The goal is to control the level of the
water in the tank. For more information about the water tank model, see “watertank Simulink Model”
(Simulink Control Design).

Modify the original model by making the following changes:

1 Delete the PID Controller.
2 Insert the RL Agent block.
3 Connect the observation vector ∫e dt e h T , where h is the height of the tank, e = r − h, and r is

the reference height.
4 Set up the reward reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20 .
5 Configure the termination signal such that the simulation stops if h ≤ 0 or h ≥ 20.

The resulting model is rlwatertank.slx. For more information on this model and the changes, see
“Create Simulink Environments for Reinforcement Learning” on page 2-5.

open_system('rlwatertank')

 Create Simulink Environment and Train Agent

1-19

Create Environment Interface

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment. For more
information, see rlNumericSpec and rlFiniteSetSpec.

• Reward signal that the agent uses to measure its success. For more information, see “Define
Reward Signals” on page 2-7.

Define the observation specification obsInfo and action specification actInfo.

obsInfo = rlNumericSpec([3 1],...
 'LowerLimit',[-inf -inf 0]',...
 'UpperLimit',[inf inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'flow';
numActions = actInfo.Dimension(1);

Build the environment interface object.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent',...
 obsInfo,actInfo);

Set a custom reset function that randomizes the reference values for the model.

env.ResetFcn = @(in)localResetFcn(in);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 1.0;
Tf = 200;

1 Getting Started

1-20

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

Given observations and actions, a DDPG agent approximates the long-term reward using a critic
value function representation. To create the critic, first create a deep neural network with two inputs,
the observation and action, and one output. For more information on creating a deep neural network
value function representation, see “Create Policy and Value Function Representations” on page 4-2.

statePath = [
 featureInputLayer(numObservations,'Normalization','none','Name','State')
 fullyConnectedLayer(50,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(25,'Name','CriticStateFC2')];
actionPath = [
 featureInputLayer(numActions,'Normalization','none','Name','Action')
 fullyConnectedLayer(25,'Name','CriticActionFC1')];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Create Simulink Environment and Train Agent

1-21

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation specifications for the critic, which you obtain from the
environment interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);

Given observations, a DDPG agent decides which action to take using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor in a similar manner to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','State')
 fullyConnectedLayer(3, 'Name','actorFC')
 tanhLayer('Name','actorTanh')
 fullyConnectedLayer(numActions,'Name','Action')
];

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},actorOptions);

1 Getting Started

1-22

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',1.0, ...
 'MiniBatchSize',64, ...
 'ExperienceBufferLength',1e6);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 5000 episodes. Specify that each episode lasts for at most
ceil(Tf/Ts) (that is 200) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 800 over 20
consecutive episodes. At this point, the agent can control the level of water in the tank.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'ScoreAveragingWindowLength',20, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',800);

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('WaterTankDDPG.mat','agent')
end

 Create Simulink Environment and Train Agent

1-23

Validate Trained Agent

Validate the learned agent against the model by simulation.

simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
experiences = sim(env,agent,simOpts);

1 Getting Started

1-24

 Create Simulink Environment and Train Agent

1-25

Local Function

function in = localResetFcn(in)

% randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-5

1 Getting Started

1-26

Create Environments

• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Define Reward Signals” on page 2-7
• “Load Predefined Grid World Environments” on page 2-9
• “Load Predefined Control System Environments” on page 2-15
• “Load Predefined Simulink Environments” on page 2-22
• “Create Custom Grid World Environments” on page 2-28
• “Create MATLAB Environment Using Custom Functions” on page 2-33
• “Create Custom MATLAB Environment from Template” on page 2-40
• “Water Tank Reinforcement Learning Environment Model” on page 2-46

2

Create MATLAB Environments for Reinforcement Learning
In a reinforcement learning scenario, where you are training an agent to complete a task, the
environment models the external system (that is the world) with which the agent interacts. In control
systems applications, this external system is often referred to as the plant.

As shown in the following figure, the environment:

1 Receives actions from the agent.
2 Returns observations in response to the actions.
3 Generates a reward measuring how well the action contributes to achieving the task.

Creating an environment model involves defining:

• Action and observation signals that the agent uses to interact with the environment.
• A reward signal that the agent uses to measure its success. For more information, see “Define

Reward Signals” on page 2-7.
• The environment initial condition and its dynamic behavior.

Action and Observation Signals
When you create the environment object, you must specify the action and observation signals that the
agent uses to interact with the environment. You can create both discrete and continuous action and
observation spaces. For more information, see rlNumericSpec and rlFiniteSetSpec,
respectively.

2 Create Environments

2-2

What signals you select as actions and observations depends on your application. For example, for
control system applications, the integrals (and sometimes derivatives) of error signals are often
useful observations. Also, for reference-tracking applications, having a time-varying reference signal
as an observation is helpful.

When you define your observation signals, ensure that all the environment states (or their estimation)
are included in the observation vector. This is a good practice because the agent is often a static
function which lacks internal memory or state, and so it might not be able to successfully reconstruct
the environment state internally.

For example, an image observation of a swinging pendulum has position information but does not
have enough information, by itself, to determine the pendulum velocity. In this case, you can measure
or estimate the pendulum velocity as an additional entry in the observation vector.

Predefined MATLAB Environments
The Reinforcement Learning Toolbox software provides some predefined MATLAB environments for
which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

For more information, see “Load Predefined Grid World Environments” on page 2-9 and “Load
Predefined Control System Environments” on page 2-15.

Custom MATLAB Environments
You can create the following types of custom MATLAB environments for your own applications:

• Grid worlds with specified size, rewards, and obstacles
• Environments with dynamics specified using custom functions
• Environments specified by creating and modifying a template environment object

Once you create a custom environment object, you can train an agent in the same manner as in a
predefined environment. For more information on training agents, see “Train Reinforcement Learning
Agents” on page 5-2.

Custom Grid Worlds

You can create custom grid worlds of any size with your own custom reward, state transition, and
obstacle configurations. To create a custom grid world environment:

1 Create a grid world model using the createGridWorld function. For example, create a grid
world named gw with ten rows and nine columns.

gw = createGridWorld(10,9);
2 Configure the grid world by modifying the properties of the model. For example, specify the

terminal state as the location [7,9]

gw.TerminalStates = "[7,9]";

 Create MATLAB Environments for Reinforcement Learning

2-3

3 A grid world needs to be included in a Markov decision process (MDP) environment. Create an
MDP environment for this grid world, which the agent uses to interact with the grid world model.

env = rlMDPEnv(gw);

For more information on Custom Grid Worlds see “Create Custom Grid World Environments” on page
2-28.

Specify Custom Functions

For simple environments, you can define a custom environment object by creating an
rlFunctionEnv object and specifying your own custom reset and step functions.

• At the beginning of each training episode, the agent calls the reset function to set the environment
initial condition. For example, you can specify known initial state values or place the environment
into a random initial state.

• The step function defines the dynamics of the environment, that is, how the state changes as a
function of the current state and the agent action. At each training time step, the state of the
model is updated using the step function.

For more information, see “Create MATLAB Environment Using Custom Functions” on page 2-33.

Create and Modify Template Environment

For more complex environments, you can define a custom environment by creating and modifying a
template environment. To create a custom environment:

1 Create an environment template class using the rlCreateEnvTemplate function.
2 Modify the template environment, specifying environment properties, required environment

functions, and optional environment functions.
3 Validate your custom environment using validateEnvironment.

For more information, see “Create Custom MATLAB Environment from Template” on page 2-40.

See Also
rlCreateEnvTemplate | rlFunctionEnv | rlPredefinedEnv

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create Simulink Environments for Reinforcement Learning” on page 2-5

2 Create Environments

2-4

Create Simulink Environments for Reinforcement Learning
In a reinforcement learning scenario, where you are training an agent to complete task, the
environment models the dynamics with which the agent interacts. As shown in the following figure,
the environment:

1 Receives actions from the agent.
2 Outputs observations in response to the actions.
3 Generates a reward measuring how well the action contributes to achieving the task.

Creating an environment model includes defining the following:

• Action and observation signals that the agent uses to interact with the environment.
• Reward signal that the agent uses to measure its success. For more information, see “Define

Reward Signals” on page 2-7.
• Environment dynamic behavior.

Action and Observation Signals
When you create an environment object, you must specify the action and observation signals that the
agent uses to interact with the environment. You can create both discrete and continuous action
spaces. For more information, see rlNumericSpec and rlFiniteSetSpec, respectively.

What signals you select as actions and observations depends on your application. For example, for
control system applications, the integrals (and sometimes derivatives) of error signals are often

 Create Simulink Environments for Reinforcement Learning

2-5

useful observations. Also, for reference-tracking applications, having a time-varying reference signal
as an observation is helpful.

When you define your observation signals, ensure that all the system states are observable through
the observations. For example, an image observation of a swinging pendulum has position
information but does not have enough information to determine the pendulum velocity. In this case,
you can specify the pendulum velocity as a separate observation.

Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for which the
actions, observations, rewards, and dynamics are already defined. You can use these environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

For more information, see “Load Predefined Simulink Environments” on page 2-22.

Custom Simulink Environments
To specify your own custom reinforcement learning environment, create a Simulink model with an RL
Agent block. In this model, connect the action, observation, and reward signals to the RL Agent block.
For an example, see “Water Tank Reinforcement Learning Environment Model” on page 2-46.

For the action and observation signals, you must create specification objects using rlNumericSpec
for continuous signals and rlFiniteSetSpec for discrete signals. For bus signals, create
specifications using bus2RLSpec.

For the reward signal, construct a scalar signal in the model and connect this signal to the RL Agent
block. For more information, see “Define Reward Signals” on page 2-7.

After configuring the Simulink model, create an environment object for the model using the
rlSimulinkEnv function.

If you have a reference model with an appropriate action input port, observation output port, and
scalar reward output port, you can automatically create a Simulink model that includes this reference
model and an RL Agent block. For more information, see createIntegratedEnv. This function
returns the environment object, action specifications, and observation specifications for the model.

Your environment can include third-party functionality. For more information, see “Integrate with
Existing Simulation or Environment” (Simulink).

See Also
createIntegratedEnv | rlPredefinedEnv | rlSimulinkEnv

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2

2 Create Environments

2-6

Define Reward Signals
To guide the learning process, reinforcement learning uses a scalar reward signal generated from the
environment. This signal measures the performance of the agent with respect to the task goals. In
other words, for a given observation (state), the reward measures he effectiveness of taking a
particular action. During training, an agent updates its policy based on the rewards received for
different state-action combinations. For more information on the different types of agents and how
they use the reward signal during training, see “Reinforcement Learning Agents” on page 3-2.

In general, you provide a positive reward to encourage certain agent actions and a negative reward
(penalty) to discourage other actions. A well-designed reward signal guides the agent to maximize the
expectation of the long-term reward. What constitutes a well-designed reward depends on your
application and the agent goals.

For example, when an agent must perform a task for as long as possible, a common strategy is to
provide a small positive reward for each time step that the agent successfully performs the task and a
large penalty when the agent fails. This approach encourages longer training episodes while heavily
discouraging episodes that fail. For an example that uses this approach, see “Train DQN Agent to
Balance Cart-Pole System” on page 5-8.

If your reward function incorporates multiple signals, such as position, velocity, and control effort,
you must consider the relative sizes of the signals and scale their contributions to the reward signal
accordingly.

You can specify either continuous or discrete reward signals. In either case, you must provide a
reward signal that provides rich information when the action and observation signals change.

Continuous Rewards
A continuous reward function varies continuously with changes in the environment observations and
actions. In general, continuous reward signals improve convergence during training and can lead to
simpler network structures.

An example of a continuous reward is the quadratic regulator (QR) cost function, where the long-term
reward can be expressed as

Ji = − sτ
TQτsτ + ∑

j = i

τ
s j

TQ js j + a j
TR ja j + 2s j

TN ja j

Here, Qτ, Q, R, and N are the weight matrices. Qτ is the terminal weight matrix, applied only at the
end of the episode. Also, s is the observation vector, a is the action vector, and τ is the terminal
iteration of the episode. The instantaneous reward for this cost function is

ri = si
TQisi + ai

TRiai + 2si
TNiai

This QR reward structure encourages driving s to zero with minimal action effort. A QR-based reward
structure is a good reward to choose for regulation or stationary point problems, such as pendulum
swing-up or regulating the position of the double integrator. For training examples that use a QR
reward, see “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-37 and “Train DDPG
Agent to Control Double Integrator System” on page 5-31.

Smooth continuous rewards, such as the QR regulator, are good for fine-tuning parameters and can
provide policies similar to optimal controllers (LQR/MPC).

 Define Reward Signals

2-7

Discrete Rewards
A discrete reward function varies discontinuously with changes in the environment observations or
actions. These types of reward signals can make convergence slower and can require more complex
network structures. Discrete rewards are usually implemented as events that occur in the
environment—for example, when an agent receives a positive reward if it exceeds some target value
or a penalty when it violates some performance constraint.

While discrete rewards can slow down convergence, they can also guide the agent toward better
reward regions in the state space of the environment. For example, a region-based reward, such as a
fixed reward when the agent is near a target location, can emulate final-state constraints. Also, a
region-based penalty can encourage an agent to avoid certain areas of the state space.

Mixed Rewards
In many cases, providing a mixed reward signal that has a combination of continuous and discrete
reward components is beneficial. The discrete reward signal can be used to drive the system away
from bad states, and the continuous reward signal can improve convergence by providing a smooth
reward near target states. For example, in “Train DDPG Agent to Control Flying Robot” on page 5-
90, the reward function has three components: r1, r2, and r3.

r1 = 10 xt
2 + yt

2 + θt
2 < 0.5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0.2 Rt − 1 + Lt − 1
2 + 0.3 Rt − 1− Lt − 1

2 + 0.03xt
2 + 0.03yt

2 + 0.02θt
2

r = r1 + r2 + r3

Here:

• r1 is a region-based continuous reward that applies only near the target location of the robot.
• r2 is a discrete signal that provides a large penalty when the robot moves far from the target

location.
• r3 is a continuous QR penalty that applies for all robot states.

See Also

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Simulink Environments for Reinforcement Learning” on page 2-5

2 Create Environments

2-8

Load Predefined Grid World Environments
Reinforcement Learning Toolbox software provides several predefined grid world environments for
which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined MATLAB grid world environments using the
rlPredefinedEnv function.

Environment Agent Task
Basic grid world Move from a starting location to a target location on a two-

dimensional grid by selecting moves from the discrete action
space {N,S,E,W}.

Waterfall grid world Move from a starting location to a target location on a larger
two-dimensional grid with unknown deterministic or stochastic
dynamics.

For more information on the properties of grid world environments, see “Create Custom Grid World
Environments” on page 2-28.

You can also load predefined MATLAB control system environments. For more information, see “Load
Predefined Control System Environments” on page 2-15.

Basic Grid World
The basic grid world environment is a two-dimensional 5-by-5 grid with a starting location, terminal
location, and obstacles. The environment also contains a special jump from state [2,4] to state [4,4].
The goal of the agent is to move from the starting location to the terminal location while avoiding
obstacles and maximizing the total reward.

To create a basic grid world environment, use the rlPredefinedEnv function. This function creates
an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('BasicGridWorld');

You can visualize the grid world environment using the plot function.

• Agent location is a red circle. By default, the agent starts in state [1,1].
• Terminal location is a blue square.
• Obstacles are black squares.

plot(env)

 Load Predefined Grid World Environments

2-9

Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [5,5]
• +5 reward for jumping from state [2,4] to state [4,4]
• -1 penalty for every other action

Deterministic Waterfall Grid Worlds
The deterministic waterfall grid world environment is a two-dimensional 8-by-7 grid with a starting
location and terminal location. The environment includes a waterfall that pushes the agent toward
the bottom of the grid. The goal of the agent is to move from the starting location to the terminal
location while maximizing the total reward.

To create a deterministic waterfall grid world, use the rlPredefinedEnv function. This function
creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Deterministic');

As with the basic grid world, you can visualize the environment, where the agent is a red circle and
the terminal location is a blue square.

plot(env)

2 Create Environments

2-10

Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent toward the bottom of the grid.

 Load Predefined Grid World Environments

2-11

The intensity of the waterfall varies between the columns, as shown at the top of the preceding
figure. When the agent moves into a column with a nonzero intensity, the waterfall pushes it
downward by the indicated number of squares. For example, if the agent goes east from state [5,2], it
reaches state [7,3].

Stochastic Waterfall Grid Worlds
The stochastic waterfall grid world environment is a two-dimensional 8-by-7 grid with a starting
location and terminal locations. The environment includes a waterfall that pushes the agent towards
the bottom of the grid with a stochastic intensity. The goal of the agent is to move from the starting
location to the target terminal location while avoiding the penalty terminal states along the bottom of
the grid and maximizing the total reward.

To create a stochastic waterfall grid world, use the rlPredefinedEnv function. This function
creates an rlMDPEnv object representing the grid world.

env = rlPredefinedEnv('WaterFallGridWorld-Stochastic');

As with the basic grid world, you can visualize the environment, where the agent is a red circle and
the terminal location is a blue square.

plot(env)

2 Create Environments

2-12

Actions

The agent can move in one of four possible directions (north, south, east, or west).

Rewards

The agent receives the following rewards or penalties:

• +10 reward for reaching the terminal state at [4,5]
• -10 penalty for reaching any terminal state in the bottom row of the grid
• -1 penalty for every other action

Waterfall Dynamics

In this environment, a waterfall pushes the agent towards the bottom of the grid with a stochastic
intensity. The baseline intensity matches the intensity of the deterministic waterfall environment.
However, in the stochastic waterfall case, the agent has an equal chance of experiencing the
indicated intensity, one level above that intensity, or one level below that intensity. For example, if the
agent goes east from state [5,2], it has an equal chance of reaching state [6,3], [7,3], or [8,3].

See Also
rlMDPEnv | rlPredefinedEnv | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2

 Load Predefined Grid World Environments

2-13

• “Load Predefined Control System Environments” on page 2-15
• “Train Reinforcement Learning Agents” on page 5-2

2 Create Environments

2-14

Load Predefined Control System Environments
Reinforcement Learning Toolbox software provides several predefined control system environments
for which the actions, observations, rewards, and dynamics are already defined. You can use these
environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined MATLAB control system environments using the
rlPredefinedEnv function.

Environment Agent Task
Cart-pole Balance a pole on a moving cart by applying forces to the cart

using either a discrete or continuous action space.
Double integrator Control a second-order dynamic system using either a discrete

or continuous action space.
Simple pendulum with image
observation

Swing up and balance a simple pendulum using either a
discrete or continuous action space.

You can also load predefined MATLAB grid world environments. For more information, see “Load
Predefined Grid World Environments” on page 2-9.

Cart-Pole Environments
The goal of the agent in the predefined cart-pole environments is to balance a pole on a moving cart
by applying horizontal forces to the cart. The pole is considered successfully balanced if both of the
following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the vertical
position is zero radians.

• The magnitude of the cart position remains below a given threshold.

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the MaxForce
property of the environment.

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a cart-pole environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPole-Discrete');
• Continuous action space

env = rlPredefinedEnv('CartPole-Continuous');

You can visualize the cart-pole environment using the plot function. The plot displays the cart as a
blue square and the pole as a red rectangle.

 Load Predefined Control System Environments

2-15

plot(env)

To visualize the environment during training, call plot before training and keep the visualization
figure open.

For examples showing how to train agents in cart-pole environments, see the following:

• “Train DQN Agent to Balance Cart-Pole System” on page 5-8
• “Train PG Agent to Balance Cart-Pole System” on page 5-14
• “Train AC Agent to Balance Cart-Pole System” on page 5-19

Environment Properties

Property Description Default
Gravity Acceleration due to gravity in meters per second 9.8
MassCart Mass of the cart in kilograms 1
MassPole Mass of the pole in kilograms 0.1
Length Half the length of the pole in meters 0.5
MaxForce Maximum horizontal force magnitude in newtons 10
Ts Sample time in seconds 0.02
ThetaThresholdRadia
ns

Pole angle threshold in radians 0.2094

XThreshold Cart position threshold in meters 2.4
RewardForNotFalling Reward for each time step the pole is balanced 1
PenaltyForFalling Reward penalty for failing to balance the pole Discrete — -5

Continuous — -50

2 Create Environments

2-16

Property Description Default
State Environment state, specified as a column vector

with the following state variables:

• Cart position
• Derivative of cart position
• Pole angle
• Derivative of pole angle

[0 0 0 0]'

Actions

In the cart-pole environments, the agent interacts with the environment using a single action signal,
the horizontal force applied to the cart. The environment contains a specification object for this
action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the cart-pole system, the agent can observe all the environment state variables in env.State. For
each state variable, the environment contains an rlNumericSpec observation specification. All the
states are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment consists of two components.

• A positive reward for each time step that the pole is balanced, that is, the cart and pole both
remain within their specified threshold ranges. This reward accumulates over the entire training
episode. To control the size of this reward, use the RewardForNotFalling property of the
environment.

• A one-time negative penalty if either the pole or cart moves outside of their threshold range. At
this point, the training episode stops. To control the size of this penalty, use the
PenaltyForFalling property of the environment.

Double Integrator Environments
The goal of the agent in the predefined double integrator environments is to control the position of a
mass in a second-order system by applying a force input. Specifically, the second-order system is a
double integrator with a gain.

Training episodes for these environments end when either of the following events occurs:

• The mass moves beyond a given threshold from the origin.
• The norm of the state vector is less than a given threshold.

 Load Predefined Control System Environments

2-17

There are two double integrator environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of either Fmax or -Fmax to the cart, where Fmax is the MaxForce
property of the environment.

• Continuous — Agent can apply any force within the range [-Fmax,Fmax].

To create a double integrator environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('DoubleIntegrator-Discrete');

• Continuous action space

env = rlPredefinedEnv('DoubleIntegrator-Continuous');

You can visualize the double integrator environment using the plot function. The plot displays the
mass as a red rectangle.

plot(env)

To visualize the environment during training, call plot before training and keep the visualization
figure open.

For examples showing how to train agents in double integrator environments, see the following:

• “Train DDPG Agent to Control Double Integrator System” on page 5-31
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-25

Environment Properties

Property Description Default
Gain Gain for the double integrator 1
Ts Sample time in seconds 0.1
MaxDistance Distance magnitude threshold in meters 5
GoalThreshold State norm threshold 0.01
Q Weight matrix for observation component of

reward signal
[10 0; 0 1]

2 Create Environments

2-18

Property Description Default
R Weight matrix for action component of reward

signal
0.01

MaxForce Maximum input force in newtons Discrete: 2

Continuous: Inf
State Environment state, specified as a column vector

with the following state variables:

• Mass position
• Derivative of mass position

[0 0]'

Actions

In the double integrator environments, the agent interacts with the environment using a single action
signal, the force applied to the mass. The environment contains a specification object for this action
signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the double integrator system, the agent can observe both of the environment state variables in
env.State. For each state variable, the environment contains an rlNumericSpec observation
specification. Both states are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the discrete-time equivalent of the following continuous-
time reward, which is analogous to the cost function of an LQR controller.

reward = −∫ x′Qx + u′Ru dt

Here:

• Q and R are environment properties.
• x is the environment state vector.
• u is the input force.

This reward is the episodic reward, that is, the cumulative reward across the entire training episode.

Simple Pendulum Environments with Image Observation
This environment is a simple frictionless pendulum that is initially hangs in a downward position. The
training goal is to make the pendulum stand upright without falling over using minimal control effort.

 Load Predefined Control System Environments

2-19

There are two simple pendulum environment variants, which differ by the agent action space.

• Discrete — Agent can apply a torque of -2, -1, 0, 1, or 2 to the pendulum.
• Continuous — Agent can apply any torque within the range [-2,2].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');

• Continuous action space

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous');

For examples showing how to train an agent in this environment, see the following:

• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation” on page 5-65
• “Create Agent Using Deep Network Designer and Train Using Image Observations” on page 5-73

Environment Properties

Property Description Default
Mass Pendulum mass 1
RodLength Pendulum length 1
RodInertia Pendulum moment of inertia 0
Gravity Acceleration due to gravity in meters per second 9.81
DampingRatio Damping on pendulum motion 0
MaximumTorque Maximum input torque in newtons 2
Ts Sample time in seconds 0.05
State Environment state, specified as a column vector

with the following state variables:

• Pendulum angle
• Pendulum angular velocity

[0 0]'

Q Weight matrix for observation component of
reward signal

[1 0;0 0.1]

R Weight matrix for action component of reward
signal

1e-3

Actions

In the simple pendulum environments, the agent interacts with the environment using a single action
signal, the torque applied at the base of the pendulum. The environment contains a specification
object for this action signal. For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

2 Create Environments

2-20

Observations

In the simple pendulum environment, the agent receives the following observation signals:

• 50-by-50 grayscale image of the pendulum position
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.
• θ̇t is the derivative of the pendulum angle.
• ut-1 is the control effort from the previous time step.

See Also
rlPredefinedEnv | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Load Predefined Grid World Environments” on page 2-9
• “Train Reinforcement Learning Agents” on page 5-2

 Load Predefined Control System Environments

2-21

Load Predefined Simulink Environments
Reinforcement Learning Toolbox software provides predefined Simulink environments for which the
actions, observations, rewards, and dynamics are already defined. You can use these environments to:

• Learn reinforcement learning concepts.
• Gain familiarity with Reinforcement Learning Toolbox software features.
• Test your own reinforcement learning agents.

You can load the following predefined Simulink environments using the rlPredefinedEnv function.

Environment Agent Task
Simple pendulum Simulink model Swing up and balance a simple pendulum using either a

discrete or continuous action space.
Cart-pole Simscape™ model Balance a pole on a moving cart by applying forces to the cart

using either a discrete or continuous action space.

For predefined Simulink environments, the environment dynamics, observations, and reward signal
are defined in a corresponding Simulink model. The rlPredefinedEnv function creates a
SimulinkEnvWithAgent object that the train function uses to interact with the Simulink model.

Simple Pendulum Simulink Model
This environment is a simple frictionless pendulum that initially hangs in a downward position. The
training goal is to make the pendulum stand upright without falling over using minimal control effort.
The model for this environment is defined in the rlSimplePendulumModel Simulink model.

open_system('rlSimplePendulumModel')

2 Create Environments

2-22

There are two simple pendulum environment variants, which differ by the agent action space.

• Discrete — Agent can apply a torque of either Tmax, 0, or -Tmax to the pendulum, where Tmax is the
max_tau variable in the model workspace.

• Continuous — Agent can apply any torque within the range [-Tmax,Tmax].

To create a simple pendulum environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('SimplePendulumModel-Discrete');

• Continuous action space

env = rlPredefinedEnv('SimplePendulumModel-Continuous');

For examples that train agents in the simple pendulum environment, see:

• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-37
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-44

Actions

In the simple pendulum environments, the agent interacts with the environment using a single action
signal, the torque applied at the base of the pendulum. The environment contains a specification
object for this action signal. For the environment with a:

 Load Predefined Simulink Environments

2-23

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the simple pendulum environment, the agent receives the following three observation signals,
which are constructed within the create observations subsystem.

• Sine of the pendulum angle
• Cosine of the pendulum angle
• Derivative of the pendulum angle

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment, which is constructed in the calculate reward subsystem, is

rt = − θt
2 + 0.1 ∗ θ̇t

2 + 0.001 ∗ ut − 1
2

Here:

• θt is the pendulum angle of displacement from the upright position.
• θ̇t is the derivative of the pendulum angle.

• ut-1 is the control effort from the previous time step.

Cart-Pole Simscape Model
The goal of the agent in the predefined cart-pole environments is to balance a pole on a moving cart
by applying horizontal forces to the cart. The pole is considered successfully balanced if both of the
following conditions are satisfied:

• The pole angle remains within a given threshold of the vertical position, where the vertical
position is zero radians.

• The magnitude of the cart position remains below a given threshold.

The model for this environment is defined in the rlCartPoleSimscapeModel Simulink model. The
dynamics of this model are defined using Simscape Multibody™.

open_system('rlCartPoleSimscapeModel')

2 Create Environments

2-24

In the Environment subsystem, the model dynamics are defined using Simscape components and the
reward and observation are constructed using Simulink blocks.

open_system('rlCartPoleSimscapeModel/Environment')

There are two cart-pole environment variants, which differ by the agent action space.

• Discrete — Agent can apply a force of 15, 0, or -15 to the cart.
• Continuous — Agent can apply any force within the range [-15,15].

 Load Predefined Simulink Environments

2-25

To create a cart-pole environment, use the rlPredefinedEnv function.

• Discrete action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Discrete');
• Continuous action space

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous');

For an example that trains an agent in this cart-pole environment, see “Train DDPG Agent to Swing
Up and Balance Cart-Pole System” on page 5-51.

Actions

In the cart-pole environments, the agent interacts with the environment using a single action signal,
the force applied to the cart. The environment contains a specification object for this action signal.
For the environment with a:

• Discrete action space, the specification is an rlFiniteSetSpec object.
• Continuous action space, the specification is an rlNumericSpec object.

For more information on obtaining action specifications from an environment, see getActionInfo.

Observations

In the cart-pole environment, the agent receives the following five observation signals.

• Sine of the pole angle
• Cosine of the pole angle
• Derivative of the pendulum angle
• Cart position
• Derivative of cart position

For each observation signal, the environment contains an rlNumericSpec observation specification.
All the observations are continuous and unbounded.

For more information on obtaining observation specifications from an environment, see
getObservationInfo.

Reward

The reward signal for this environment is the sum of three components (r = rqr + rn + rp):

• A quadratic regulator control reward, constructed in the Environment/qr reward subsystem.

rqr = − 0.1 ∗ x2 + 0.5 ∗ θ2 + 0.005 ∗ ut − 1
2

• An additional reward for when the pole is near the upright position, constructed in the
Environment/near upright reward subsystem.

rn = 10 ∗ θ < 0.175
• A cart limit penalty, constructed in the Environment/x limit penalty subsystem. This

subsystem generates a negative reward when the magnitude of the cart position exceeds a given
threshold.

2 Create Environments

2-26

rp = − 100 ∗ x ≥ 3.5

Here:

• x is the cart position.
• θ is the pole angle of displacement from the upright position.
• ut-1 is the control effort from the previous time step.

See Also
Blocks
RL Agent

Functions
rlPredefinedEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Train Reinforcement Learning Agents” on page 5-2

 Load Predefined Simulink Environments

2-27

Create Custom Grid World Environments
A grid world is a two-dimensional, cell-based environment where the agent starts from one cell and
moves toward the terminal cell while collecting as much reward as possible. Grid world environments
are useful for applying reinforcement learning algorithms to discover optimal paths and policies for
agents on the grid to arrive at the terminal goal in the fewest moves.

Reinforcement Learning Toolbox lets you create custom MATLAB grid world environments for your
own applications. To create a custom grid world environment:

1 Create the grid world model.
2 Configure the grid world model.
3 Use the grid world model to create your own grid world environment.

Grid World Model
You can create your own grid world model using the createGridWorld function. Specify the grid
size when creating the GridWorld model object.

The GridWorld object has the following properties.

Property Read-
Only

Description

GridSize Yes Dimensions of the grid world, displayed as an m-by-n array. Here, m
represents the number of grid rows and n is the number of grid
columns.

2 Create Environments

2-28

Property Read-
Only

Description

CurrentStat
e

No Name of the current state of the agent, specified as a string. You can
use this property to set the initial state of the agent. The agent always
starts from cell [1,1] by default.

The agent starts from the CurrentState once you use the reset
function in the rlMDPEnv environment object.

States Yes A string vector containing the state names of the grid world. For
instance, for a 2-by-2 grid world model GW, specify the following:

GW.States = ["[1,1]";
 "[2,1]";
 "[1,2]";
 "[2,2]"];

Actions Yes A string vector containing the list of possible actions that the agent can
use. You can set the actions when you create the grid world model by
using the moves argument:

GW = createGridWorld(m,n,moves)

Specify moves as either 'Standard' or 'Kings'.

moves Gw.Actions
'Standard' ['N';'S';'E';'W']
'Kings' ['N';'S';'E';'W';'NE';'NW';'SE';'SW']

 Create Custom Grid World Environments

2-29

Property Read-
Only

Description

T No State transition matrix, specified as a 3-D array. T is a probability matrix
that indicates the likelihood of the agent moving from the current state
s to any possible next state s' by performing action a.

T can be denoted as

T s, s′, a = probability s′ s, a .

For instance, consider a 5-by-5 deterministic grid world object GW with
the agent in cell [3,1]. View the state transition matrix for the north
direction.

northStateTransition = GW.T(:,:,1)

From the above figure, the value of northStateTransition(3,2) is
1 since the agent moves from cell [3,1] to cell [2,1] with action 'N'.
A probability of 1 indicates that from a given state, if the agent goes
north, it has a 100% chance of moving one cell north on the grid. For an
example showing how to set up the state transition matrix, see “Train
Reinforcement Learning Agent in Basic Grid World” on page 1-8.

2 Create Environments

2-30

Property Read-
Only

Description

R No Reward transition matrix, specified as a 3-D array. R determines how
much reward the agent receives after performing an action in the
environment. R has the same shape and size as the state transition
matrix T.

The reward transition matrix R can be denoted as

r = R s, s′, a .

Set up R such that there is a reward to the agent after every action. For
instance, you can set up a positive reward if the agent transitions over
obstacle states and when it reaches the terminal state. You can also set
up a default reward of -11 for all actions the agent takes, independent
of the current state and next state. For an example that show how to set
up the reward transition matrix, see “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-8.

ObstacleSta
tes

No ObstacleStates are states that cannot be reached in the grid world,
specified as a string vector. Consider the following 5-by-5 grid world
model GW.

The black cells are obstacle states, and you can specify them using the
following syntax:

GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

For a workflow example, see “Train Reinforcement Learning Agent in
Basic Grid World” on page 1-8.

 Create Custom Grid World Environments

2-31

Property Read-
Only

Description

TerminalSta
tes

No TerminalStates are the final states in the grid world, specified as a
string vector. Consider the previous 5-by-5 grid world model GW. The
blue cell is the terminal state and you can specify it by:

GW.TerminalStates = "[5,5]";

For a workflow example, see “Train Reinforcement Learning Agent in
Basic Grid World” on page 1-8.

Grid World Environment
You can create a Markov decision process (MDP) environment using rlMDPEnv from the grid world
model from the previous step. MDP is a discrete-time stochastic control process. It provides a
mathematical framework for modeling decision making in situations where outcomes are partly
random and partly under the control of the decision maker. The agent uses the grid world
environment object rlMDPEnv to interact with the grid world model object GridWorld.

For more information, see rlMDPEnv and “Train Reinforcement Learning Agent in Basic Grid World”
on page 1-8.

See Also
createGridWorld | rlMDPEnv | rlPredefinedEnv

More About
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-8

2 Create Environments

2-32

Create MATLAB Environment Using Custom Functions
This example shows how to create a cart-pole environment by supplying custom dynamic functions in
MATLAB®.

Using the rlFunctionEnv function, you can create a MATLAB reinforcement learning environment
from an observation specification, an action specification, and user-defined step and reset
functions. You can then train a reinforcement learning agent in this environment. The necessary step
and reset functions are already defined for this example.

Creating an environment using custom functions is useful for environments with less complex
dynamics, environments with no special visualization requirements, or environments with interfaces
to third-party libraries. For more complex environments, you can create an environment object using
a template class. For more information, see “Create Custom MATLAB Environment from Template” on
page 2-40.

For more information on creating reinforcement learning environments, see “Create MATLAB
Environments for Reinforcement Learning” on page 2-2 and “Create Simulink Environments for
Reinforcement Learning” on page 2-5.

Cart-Pole MATLAB Environment

The cart-pole environment is a pole attached to an unactuated joint on a cart, which moves along a
frictionless track. The training goal is to make the pendulum stand upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle that is between –0.5 and 0.05.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the cart position, cart velocity, pendulum angle, and

pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical, or if the cart moves

more than 2.4 m from the original position.

 Create MATLAB Environment Using Custom Functions

2-33

• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –10 is
applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

Observation and Action Specifications

The observations from the environment are the cart position, cart velocity, pendulum angle, and
pendulum angle derivative.

ObservationInfo = rlNumericSpec([4 1]);
ObservationInfo.Name = 'CartPole States';
ObservationInfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two possible force
values to the cart: -10 or 10 N.

ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

For more information on specifying environment actions and observations, see rlNumericSpec and
rlFiniteSetSpec.

Create Environment Using Function Names

To define a custom environment, first specify the custom step and reset functions. These functions
must be in your current working folder or on the MATLAB path.

The custom reset function sets the default state of the environment. This function must have the
following signature.

[InitialObservation,LoggedSignals] = myResetFunction()

To pass information from one step to the next, such as the environment state, use LoggedSignals.
For this example, LoggedSignals contains the states of the cart-pole environment: the position and
velocity of the cart, the pendulum angle, and the pendulum angle derivative. The reset function sets
the cart angle to a random value each time the environment is reset.

For this example, use the custom reset function defined in myResetFunction.m.

type myResetFunction.m

function [InitialObservation, LoggedSignal] = myResetFunction()
% Reset function to place custom cart-pole environment into a random
% initial state.

% Theta (randomize)
T0 = 2 * 0.05 * rand() - 0.05;
% Thetadot
Td0 = 0;
% X
X0 = 0;
% Xdot
Xd0 = 0;

% Return initial environment state variables as logged signals.

2 Create Environments

2-34

LoggedSignal.State = [X0;Xd0;T0;Td0];
InitialObservation = LoggedSignal.State;

end

The custom step function specifies how the environment advances to the next state based on a given
action. This function must have the following signature.

[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

To get the new state, the environment applies the dynamic equation to the current state stored in
LoggedSignals, which is similar to giving an initial condition to a differential equation. The new
state is stored in LoggedSignals and returned as an output.

For this example, use the custom step function defined in myStepFunction.m. For implementation
simplicity, this function redefines physical constants, such as the cart mass, every time step is
executed.

type myStepFunction.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)
% Custom step function to construct cart-pole environment for the function
% name case.
%
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.

% Acceleration due to gravity in m/s^2
Gravity = 9.8;
% Mass of the cart
CartMass = 1.0;
% Mass of the pole
PoleMass = 0.1;
% Half the length of the pole
HalfPoleLength = 0.5;
% Max force the input can apply
MaxForce = 10;
% Sample time
Ts = 0.02;
% Pole angle at which to fail the episode
AngleThreshold = 12 * pi/180;
% Cart distance at which to fail the episode
DisplacementThreshold = 2.4;
% Reward each time step the cart-pole is balanced
RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
PenaltyForFalling = -10;

% Check if the given action is valid.
if ~ismember(Action,[-MaxForce MaxForce])
 error('Action must be %g for going left and %g for going right.',...
 -MaxForce,MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.

 Create MATLAB Environment Using Custom Functions

2-35

State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation.
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = CartMass + PoleMass;
temp = (Force + PoleMass*HalfPoleLength*ThetaDot*ThetaDot*SinTheta)/SystemMass;

% Apply motion equations.
ThetaDotDot = (Gravity*SinTheta - CosTheta*temp) / ...
 (HalfPoleLength*(4.0/3.0 - PoleMass*CosTheta*CosTheta/SystemMass));
XDotDot = temp - PoleMass*HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > DisplacementThreshold || abs(Theta) > AngleThreshold;

% Get reward.
if ~IsDone
 Reward = RewardForNotFalling;
else
 Reward = PenaltyForFalling;
end

end

Construct the custom environment using the defined observation specification, action specification,
and function names.

env = rlFunctionEnv(ObservationInfo,ActionInfo,'myStepFunction','myResetFunction');

To verify the operation of your environment, rlFunctionEnv automatically calls
validateEnvironment after creating the environment.

Create Environment Using Function Handles

You can also define custom functions that have additional input arguments beyond the minimum
required set. For example, to pass the additional arguments arg1 and arg2 to both the step and rest
function, use the following code.

[InitialObservation,LoggedSignals] = myResetFunction(arg1,arg2)
[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals,arg1,arg2)

To use these functions with rlFunctionEnv, you must use anonymous function handles.

ResetHandle = @()myResetFunction(arg1,arg2);
StepHandle = @(Action,LoggedSignals) myStepFunction(Action,LoggedSignals,arg1,arg2);

For more information, see “Anonymous Functions”.

2 Create Environments

2-36

Using additional input arguments can create a more efficient environment implementation. For
example, myStepFunction2.m contains a custom step function that takes the environment
constants as an input argument (envConstants). By doing so, this function avoids redefining the
environment constants at each step.

type myStepFunction2.m

function [NextObs,Reward,IsDone,LoggedSignals] = myStepFunction2(Action,LoggedSignals,EnvConstants)
% Custom step function to construct cart-pole environment for the function
% handle case.
%
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Check if the given action is valid.
if ~ismember(Action,[-EnvConstants.MaxForce EnvConstants.MaxForce])
 error('Action must be %g for going left and %g for going right.',...
 -EnvConstants.MaxForce,EnvConstants.MaxForce);
end
Force = Action;

% Unpack the state vector from the logged signals.
State = LoggedSignals.State;
XDot = State(2);
Theta = State(3);
ThetaDot = State(4);

% Cache to avoid recomputation.
CosTheta = cos(Theta);
SinTheta = sin(Theta);
SystemMass = EnvConstants.MassCart + EnvConstants.MassPole;
temp = (Force + EnvConstants.MassPole*EnvConstants.Length*ThetaDot*ThetaDot*SinTheta)/SystemMass;

% Apply motion equations.
ThetaDotDot = (EnvConstants.Gravity*SinTheta - CosTheta*temp)...
 / (EnvConstants.Length*(4.0/3.0 - EnvConstants.MassPole*CosTheta*CosTheta/SystemMass));
XDotDot = temp - EnvConstants.MassPole*EnvConstants.Length*ThetaDotDot*CosTheta/SystemMass;

% Perform Euler integration.
LoggedSignals.State = State + EnvConstants.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

% Transform state to observation.
NextObs = LoggedSignals.State;

% Check terminal condition.
X = NextObs(1);
Theta = NextObs(3);
IsDone = abs(X) > EnvConstants.XThreshold || abs(Theta) > EnvConstants.ThetaThresholdRadians;

% Get reward.
if ~IsDone
 Reward = EnvConstants.RewardForNotFalling;
else
 Reward = EnvConstants.PenaltyForFalling;
end

end

 Create MATLAB Environment Using Custom Functions

2-37

Create the structure that contains the environment constants.

% Acceleration due to gravity in m/s^2
envConstants.Gravity = 9.8;
% Mass of the cart
envConstants.MassCart = 1.0;
% Mass of the pole
envConstants.MassPole = 0.1;
% Half the length of the pole
envConstants.Length = 0.5;
% Max force the input can apply
envConstants.MaxForce = 10;
% Sample time
envConstants.Ts = 0.02;
% Angle at which to fail the episode
envConstants.ThetaThresholdRadians = 12 * pi/180;
% Distance at which to fail the episode
envConstants.XThreshold = 2.4;
% Reward each time step the cart-pole is balanced
envConstants.RewardForNotFalling = 1;
% Penalty when the cart-pole fails to balance
envConstants.PenaltyForFalling = -5;

Create an anonymous function handle to the custom step function, passing envConstants as an
additional input argument. Because envConstants is available at the time that StepHandle is
created, the function handle includes those values. The values persist within the function handle even
if you clear the variables.

StepHandle = @(Action,LoggedSignals) myStepFunction2(Action,LoggedSignals,envConstants);

Use the same reset function, specifying it as a function handle rather than by using its name.

ResetHandle = @myResetFunction;

Create the environment using the custom function handles.

env2 = rlFunctionEnv(ObservationInfo,ActionInfo,StepHandle,ResetHandle);

Validate Custom Functions

Before you train an agent in your environment, the best practice is to validate the behavior of your
custom functions. To do so, you can initialize your environment using the reset function and run one
simulation step using the step function. For reproducibility, set the random generator seed before
validation.

Validate the environment created using function names.

rng(0);
InitialObs = reset(env)

InitialObs = 4×1

 0
 0
 0.0315
 0

2 Create Environments

2-38

[NextObs,Reward,IsDone,LoggedSignals] = step(env,10);
NextObs

NextObs = 4×1

 0
 0.1947
 0.0315
 -0.2826

Validate the environment created using function handles.

rng(0);
InitialObs2 = reset(env2)

InitialObs2 = 4×1

 0
 0
 0.0315
 0

[NextObs2,Reward2,IsDone2,LoggedSignals2] = step(env2,10);
NextObs

NextObs = 4×1

 0
 0.1947
 0.0315
 -0.2826

Both environments initialize and simulate successfully, producing the same state values in NextObs.

See Also
rlFunctionEnv

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create Custom MATLAB Environment from Template” on page 2-40

 Create MATLAB Environment Using Custom Functions

2-39

Create Custom MATLAB Environment from Template
You can define a custom reinforcement learning environment by creating and modifying a template
environment class. You can use a custom template environment to:

• Implement more complex environment dynamics.
• Add custom visualizations to your environment.
• Create an interface to third-party libraries defined in languages such as C++, Java®, or Python®.

For more information, see “External Language Interfaces”.

For more information about creating MATLAB classes, see “User-Defined Classes”.

You can create less complex custom reinforcement learning environments using custom functions, as
described in “Create MATLAB Environment Using Custom Functions” on page 2-33.

Create Template Class
To define your custom environment, first create the template class file, specifying the name of the
class. For this example, name the class MyEnvironment.

rlCreateEnvTemplate("MyEnvironment")

The software creates and opens the template class file. The template class is a subclass of the
rl.env.MATLABEnvironment abstract class, as shown in the class definition at the start of the
template file. This abstract class is the same one used by the other MATLAB reinforcement learning
environment objects.

classdef MyEnvironment < rl.env.MATLABEnvironment

By default, the template class implements a simple cart-pole balancing model similar to the cart-pole
predefined environments described in “Load Predefined Control System Environments” on page 2-15.

To define your environment dynamics modify the template class, specify the following:

• Environment properties
• Required environment methods
• Optional environment methods

Environment Properties
In the properties section of the template, specify any parameters necessary for creating and
simulating the environment. These parameters can include:

• Physical constants — The sample environment defines the acceleration due to gravity (Gravity).
• Environment geometry — The sample environment defines the cart and pole masses (CartMass

and PoleMass) and the half-length of the pole (HalfPoleLength).
• Environment constraints — The sample environment defines the pole angle and cart distance

thresholds (AngleThreshold and DisplacementThreshold). The environment uses these
values to detect when a training episode is finished.

• Variables required for evaluating the environment — The sample environment defines the state
vector (State) and a flag for indicating when an episode is finished (IsDone).

2 Create Environments

2-40

• Constants for defining the actions or observation spaces — The sample environment defines the
maximum force for the action space (MaxForce).

• Constants for calculating the reward signal — The sample environment defines the constants
RewardForNotFalling and PenaltyForFalling.

properties
 % Specify and initialize the necessary properties of the environment
 % Acceleration due to gravity in m/s^2
 Gravity = 9.8

 % Mass of the cart
 CartMass = 1.0

 % Mass of the pole
 PoleMass = 0.1

 % Half the length of the pole
 HalfPoleLength = 0.5

 % Max force the input can apply
 MaxForce = 10

 % Sample time
 Ts = 0.02

 % Angle at which to fail the episode (radians)
 AngleThreshold = 12 * pi/180

 % Distance at which to fail the episode
 DisplacementThreshold = 2.4

 % Reward each time step the cart-pole is balanced
 RewardForNotFalling = 1

 % Penalty when the cart-pole fails to balance
 PenaltyForFalling = -10
end

properties
 % Initialize system state [x,dx,theta,dtheta]'
 State = zeros(4,1)
end

properties(Access = protected)
 % Initialize internal flag to indicate episode termination
 IsDone = false
end

Required Functions
A reinforcement learning environment requires the following functions to be defined. The
getObservationInfo, getActionInfo, sim, and validateEnvironment functions are already
defined in the base abstract class. To create your environment, you must define the constructor,
reset, and step functions.

Function Description
getObservationInfo Return information about the environment observations
getActionInfo Return information about the environment actions
sim Simulate the environment with an agent
validateEnvironment Validate the environment by calling the reset function and

simulating the environment for one time step using step
reset Initialize the environment state and clean up any visualization

 Create Custom MATLAB Environment from Template

2-41

Function Description
step Apply an action, simulate the environment for one step, and

output the observations and rewards; also, set a flag
indicating whether the episode is complete

Constructor function A function with the same name as the class that creates an
instance of the class

Sample Constructor Function

The sample cart-pole constructor function creates the environment by:

• Defining the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Calling the constructor of the base abstract class.
function this = MyEnvironment()
 % Initialize observation settings
 ObservationInfo = rlNumericSpec([4 1]);
 ObservationInfo.Name = 'CartPole States';
 ObservationInfo.Description = 'x, dx, theta, dtheta';

 % Initialize action settings
 ActionInfo = rlFiniteSetSpec([-1 1]);
 ActionInfo.Name = 'CartPole Action';

 % The following line implements built-in functions of the RL environment
 this = this@rl.env.MATLABEnvironment(ObservationInfo,ActionInfo);

 % Initialize property values and precompute necessary values
 updateActionInfo(this);
end

This sample constructor function does not include any input arguments. However, you can add input
arguments for your custom constructor.

Sample reset Function

The sample cart-pole reset function sets the initial condition of the model and returns the initial
values of the observations. It also generates a notification that the environment has been updated by
calling the envUpdatedCallback function, which is useful for updating the environment
visualization.

% Reset environment to initial state and return initial observation
function InitialObservation = reset(this)
 % Theta (+- .05 rad)
 T0 = 2 * 0.05 * rand - 0.05;
 % Thetadot
 Td0 = 0;
 % X
 X0 = 0;
 % Xdot
 Xd0 = 0;

 InitialObservation = [X0;Xd0;T0;Td0];
 this.State = InitialObservation;

 % (Optional) Use notifyEnvUpdated to signal that the
 % environment is updated (for example, to update the visualization)
 notifyEnvUpdated(this);
end

2 Create Environments

2-42

Sample step Function

The sample cart-pole step function:

• Processes the input action.
• Evaluates the environment dynamic equations for one time step.
• Computes and returns the updated observations.
• Computes and returns the reward signal.
• Checks if the episode is complete and returns the IsDone signal as appropriate.
• Generates a notification that the environment has been updated.

function [Observation,Reward,IsDone,LoggedSignals] = step(this,Action)
 LoggedSignals = [];

 % Get action
 Force = getForce(this,Action);

 % Unpack state vector
 XDot = this.State(2);
 Theta = this.State(3);
 ThetaDot = this.State(4);

 % Cache to avoid recomputation
 CosTheta = cos(Theta);
 SinTheta = sin(Theta);
 SystemMass = this.CartMass + this.PoleMass;
 temp = (Force + this.PoleMass*this.HalfPoleLength*ThetaDot^2*SinTheta)...
 /SystemMass;

 % Apply motion equations
 ThetaDotDot = (this.Gravity*SinTheta - CosTheta*temp)...
 / (this.HalfPoleLength*(4.0/3.0 - this.PoleMass*CosTheta*CosTheta/SystemMass));
 XDotDot = temp - this.PoleMass*this.HalfPoleLength*ThetaDotDot*CosTheta/SystemMass;

 % Euler integration
 Observation = this.State + this.Ts.*[XDot;XDotDot;ThetaDot;ThetaDotDot];

 % Update system states
 this.State = Observation;

 % Check terminal condition
 X = Observation(1);
 Theta = Observation(3);
 IsDone = abs(X) > this.DisplacementThreshold || abs(Theta) > this.AngleThreshold;
 this.IsDone = IsDone;

 % Get reward
 Reward = getReward(this);

 % (Optional) Use notifyEnvUpdated to signal that the
 % environment has been updated (for example, to update the visualization)
 notifyEnvUpdated(this);
end

Optional Functions
You can define any other functions in your template class as required. For example, you can create
helper functions that are called by either step or reset. The cart-pole template model implements a
getReward function for computing the reward at each time step.

function Reward = getReward(this)
 if ~this.IsDone
 Reward = this.RewardForNotFalling;

 Create Custom MATLAB Environment from Template

2-43

 else
 Reward = this.PenaltyForFalling;
 end
end

Environment Visualization
You can add a visualization to your custom environment by implementing the plot function. In the
plot function:

• Create a figure or an instance of a visualizer class of your own implementation. For this example,
you create a figure and store a handle to the figure within the environment object.

• Call the envUpdatedCallback function.

function plot(this)
 % Initiate the visualization
 this.Figure = figure('Visible','on','HandleVisibility','off');
 ha = gca(this.Figure);
 ha.XLimMode = 'manual';
 ha.YLimMode = 'manual';
 ha.XLim = [-3 3];
 ha.YLim = [-1 2];
 hold(ha,'on');
 % Update the visualization
 envUpdatedCallback(this)
end

For this example, store the handle to the figure as a protected property of the environment object.

properties(Access = protected)
 % Initialize internal flag to indicate episode termination
 IsDone = false

 % Handle to figure
 Figure
end

In the envUpdatedCallback, plot the visualization to the figure or use your custom visualizer
object. For example, check if the figure handle has been set. If it has, then plot the visualization.
function envUpdatedCallback(this)
 if ~isempty(this.Figure) && isvalid(this.Figure)
 % Set visualization figure as the current figure
 ha = gca(this.Figure);

 % Extract the cart position and pole angle
 x = this.State(1);
 theta = this.State(3);

 cartplot = findobj(ha,'Tag','cartplot');
 poleplot = findobj(ha,'Tag','poleplot');
 if isempty(cartplot) || ~isvalid(cartplot) ...
 || isempty(poleplot) || ~isvalid(poleplot)
 % Initialize the cart plot
 cartpoly = polyshape([-0.25 -0.25 0.25 0.25],[-0.125 0.125 0.125 -0.125]);
 cartpoly = translate(cartpoly,[x 0]);
 cartplot = plot(ha,cartpoly,'FaceColor',[0.8500 0.3250 0.0980]);
 cartplot.Tag = 'cartplot';

 % Initialize the pole plot
 L = this.HalfPoleLength*2;

2 Create Environments

2-44

 polepoly = polyshape([-0.1 -0.1 0.1 0.1],[0 L L 0]);
 polepoly = translate(polepoly,[x,0]);
 polepoly = rotate(polepoly,rad2deg(theta),[x,0]);
 poleplot = plot(ha,polepoly,'FaceColor',[0 0.4470 0.7410]);
 poleplot.Tag = 'poleplot';
 else
 cartpoly = cartplot.Shape;
 polepoly = poleplot.Shape;
 end

 % Compute the new cart and pole position
 [cartposx,~] = centroid(cartpoly);
 [poleposx,poleposy] = centroid(polepoly);
 dx = x - cartposx;
 dtheta = theta - atan2(cartposx-poleposx,poleposy-0.25/2);
 cartpoly = translate(cartpoly,[dx,0]);
 polepoly = translate(polepoly,[dx,0]);
 polepoly = rotate(polepoly,rad2deg(dtheta),[x,0.25/2]);

 % Update the cart and pole positions on the plot
 cartplot.Shape = cartpoly;
 poleplot.Shape = polepoly;

 % Refresh rendering in the figure window
 drawnow();
 end
end

The environment calls the envUpdatedCallback function, and therefore updates the visualization,
whenever the environment is updated.

Create Custom Environment
After you define your custom environment class, create an instance of it in the MATLAB workspace.
At the command line, type the following.

env = MyEnvironment;

If your constructor has input arguments, specify them after the class name. For example,
MyEnvironment(arg1,arg2).

After you create your environment, the best practice is to validate the environment dynamics. To do
so, use the validateEnvironment function, which prints an error to the command window if your
environment implementation has any issues.

validateEnvironment(env)

After validating the environment object, you can use it to train a reinforcement learning agent. For
more information on training agents, see “Train Reinforcement Learning Agents” on page 5-2.

See Also
rlCreateEnvTemplate | train

More About
• “Create MATLAB Environments for Reinforcement Learning” on page 2-2
• “Create MATLAB Environment Using Custom Functions” on page 2-33
• “Define Reward Signals” on page 2-7

 Create Custom MATLAB Environment from Template

2-45

Water Tank Reinforcement Learning Environment Model
This example shows how to create a water tank reinforcement learning Simulink® environment that
contains an RL Agent block in the place of a controller for the water level in a tank. To simulate this
environment, you must create an agent and specify that agent in the RL Agent block. For an example
that trains an agent using this environment, see “Create Simulink Environment and Train Agent” on
page 1-19.

mdl = 'rlwatertank';
open_system(mdl)

This model already contains an RL Agent block, which connects to the following signals:

• Scalar action output signal
• Vector of observation input signals
• Scalar reward input signal
• Logical input signal for stopping the simulation

Actions and Observations

A reinforcement learning environment receives action signals from the agent and generates
observation signals in response to these actions. To create and train an agent, you must create action
and observation specification objects.

The action signal for this environment is the flow rate control signal that is sent to the plant. To
create a specification object for this continuous action signal, use the rlNumericSpec function.

actionInfo = rlNumericSpec([1 1]);
actionInfo.Name = 'flow';

2 Create Environments

2-46

If the action signal takes one of a discrete set of possible values, create the specification using the
rlFiniteSetSpec function.

For this environment, there are three observation signals sent to the agent, specified as a vector
signal. The observation vector is ∫e dt e h T , where:

• h is the height of the water in the tank.
• e = r − h, where r is the reference value for the water height.

Compute the observation signals in the generate observations subsystem.

open_system([mdl '/generate observations'])

Create a three-element vector of observation specifications. Specify a lower bound of 0 for the water
height, leaving the other observation signals unbounded.

observationInfo = rlNumericSpec([3 1],...
 'LowerLimit',[-inf -inf 0]',...
 'UpperLimit',[inf inf inf]');
observationInfo.Name = 'observations';
observationInfo.Description = 'integrated error, error, and measured height';

If the actions or observations are represented by bus signals, create specifications using the
bus2RLSpec function.

Reward Signal

Construct a scalar reward signal. For this example, specify the following reward.

reward = 10 e < 0 . 1 − 1 e ≥ 0 . 1 − 100 h ≤ 0 h ≥ 20

The reward is positive when the error is below 0.1 and negative otherwise. Also, there is a large
reward penalty when the water height is outside the 0 to 20 range.

Construct this reward in the calculate reward subsystem.

open_system([mdl '/calculate reward'])

 Water Tank Reinforcement Learning Environment Model

2-47

Stop Signal

To terminate training episodes and simulations, specify a logical signal to the isdone input port of
the block. For this example, terminate the episode if h ≤ 0 or h ≥ 20.

Compute this signal in the stop simulation subsystem.

open_system([mdl '/stop simulation'])

Create Environment Object

Create an environment object for the Simulink model.

env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],observationInfo,actionInfo);

Reset Function

You can also create a custom reset function that randomizes parameters, variables, or states of the
model. In this example, the reset function randomizes the reference signal and the initial water
height and sets the corresponding block parameters.

env.ResetFcn = @(in)localResetFcn(in);

Local Function

function in = localResetFcn(in)

% Randomize reference signal
blk = sprintf('rlwatertank/Desired \nWater Level');
h = 3*randn + 10;
while h <= 0 || h >= 20

2 Create Environments

2-48

 h = 3*randn + 10;
end
in = setBlockParameter(in,blk,'Value',num2str(h));

% Randomize initial height
h = 3*randn + 10;
while h <= 0 || h >= 20
 h = 3*randn + 10;
end
blk = 'rlwatertank/Water-Tank System/H';
in = setBlockParameter(in,blk,'InitialCondition',num2str(h));

end

See Also
rlSimulinkEnv

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-5

 Water Tank Reinforcement Learning Environment Model

2-49

Create Agents

• “Reinforcement Learning Agents” on page 3-2
• “Q-Learning Agents” on page 3-6
• “SARSA Agents” on page 3-8
• “Deep Q-Network Agents” on page 3-10
• “Policy Gradient Agents” on page 3-13
• “Deep Deterministic Policy Gradient Agents” on page 3-17
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-21
• “Actor-Critic Agents” on page 3-25
• “Proximal Policy Optimization Agents” on page 3-28
• “Soft Actor-Critic Agents” on page 3-32
• “Custom Agents” on page 3-37

3

Reinforcement Learning Agents
The goal of reinforcement learning is to train an agent to complete a task within an uncertain
environment. The agent receives observations and a reward from the environment and sends actions
to the environment. The reward is a measure of how successful an action is with respect to
completing the task goal.

The agent contains two components: a policy and a learning algorithm.

• The policy is a mapping that selects actions based on the observations from the environment.
Typically, the policy is a function approximator with tunable parameters, such as a deep neural
network.

• The learning algorithm continuously updates the policy parameters based on the actions,
observations, and rewards. The goal of the learning algorithm is to find an optimal policy that
maximizes the expected cumulative long-term reward received during the task.

Depending on the learning algorithm, an agent maintains one or more parameterized function
approximators for training the policy. Approximators can be used in two ways.

• Critics — For a given observation and action, a critic returns as output the expected value of the
cumulative long-term reward for the task.

• Actor — For a given observation, an actor returns as output the action that maximizes the
expected cumulative long-term reward.

Agents that use only critics to select their actions rely on an indirect policy representation. These
agents are also referred to as value-based, and they use an approximator to represent a value

3 Create Agents

3-2

function or Q-value function. In general, these agents work better with discrete action spaces but can
become computationally expensive for continuous action spaces.

Agents that use only actors to select their actions rely on a direct policy representation. These agents
are also referred to as policy-based. The policy can be either deterministic or stochastic. In general,
these agents are simpler and can handle continuous action spaces, though the training algorithm can
be sensitive to noisy measurement and can converge on local minima.

Agents that use both an actor and a critic are referred to as actor-critic agents. In these agents,
during training, the actor learns the best action to take using feedback from the critic (instead of
using the reward directly). At the same time, the critic learns the value function from the rewards so
that it can properly criticize the actor. In general, these agents can handle both discrete and
continuous action spaces.

Built-In Agents
Reinforcement Learning Toolbox software provides the following built-in agents. You can train these
agents in environments with either continuous or discrete observation spaces and the following
action spaces.

The following tables summarize the types, action spaces, and representation for all the built-in
agents. For each agent, the observation space can be either discrete or continuous.

Built-in Agents: Type and Action Space

Agent Type Action Space
“Q-Learning Agents” on page 3-6 (Q) Value-Based Discrete
“Deep Q-Network Agents” on page 3-
10(DQN)

Value-Based Discrete

“SARSA Agents” on page 3-8 Value-Based Discrete
“Policy Gradient Agents” on page 3-13
(PG)

Policy-Based Discrete or continuous

“Actor-Critic Agents” on page 3-25
(AC)

Actor-Critic Discrete or continuous

“Proximal Policy Optimization Agents”
on page 3-28 (PPO)

Actor-Critic Discrete or continuous

“Deep Deterministic Policy Gradient
Agents” on page 3-17 (DDPG)

Actor-Critic Continuous

“Twin-Delayed Deep Deterministic
Policy Gradient Agents” on page 3-21
(TD3)

Actor-Critic Continuous

“Soft Actor-Critic Agents” on page 3-
32 (SAC)

Actor-Critic Continuous

 Reinforcement Learning Agents

3-3

Built-in Agents: Representation that You Must Use with Each Agent
Representation Q, DQN,

SARSA
PG AC, PPO SAC DDPG, TD3

Value function critic V(S), which
you create using

rlValueRepresentation

 X (if
baseline is
used)

X

Q-value function critic Q(S,A),
which you create using

rlQValueRepresentation
X

X X

Deterministic policy actor π(S),
which you create using

rlDeterministicActorRepres
entation

X

Stochastic policy actor π(S), which
you create using

rlStochasticActorRepresent
ation

X X X

Agent with default networks — All agents except Q-Learning and SARSA support default networks
for actors and critics. You can create an agent with default actor and critic representations based on
the observation and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options by creating an options object set for the specific agent.
5 Create the agent using the corresponding agent creation function. The resulting agent contains

the appropriate actor and critic representations listed in the table above. The actor and critic use
default agent-specific deep neural networks as internal approximators.

For more information on creating actor and critic function approximators, see “Create Policy and
Value Function Representations” on page 4-2.

Choose the Type of Agent
When choosing an agent, a best practice is to start with a simpler (and faster to train) algorithm that
is compatible with your action and observation spaces. You can then try progressively more
complicated algorithms if the simpler ones do not perform as desired.

• Discrete action and observation space — For environments with a discrete action and
observation space, the Q-learning agent is the simplest compatible agent, followed by DQN and
PPO.

3 Create Agents

3-4

• Discrete action space and continuous observation space — For environments with a discrete
action space and a continuous observation space, DQN is the simplest compatible agent followed
by PPO.

• Continuous action space — For environments with both a continuous action and observation
space, DDPG is the simplest compatible agent, followed by TD3, PPO, and SAC. For such
environments, try DDPG first. In general:

• TD3 is an improved, more complex version of DDPG.
• PPO has more stable updates but requires more training.
• SAC is an improved, more complex version of DDPG that generates stochastic policies.

Custom Agents
You can also train policies using other learning algorithms by creating a custom agent. To do so, you
create a subclass of a custom agent class, defining the agent behavior using a set of required and
optional methods. For more information, see “Custom Agents” on page 3-37.

See Also
rlACAgent | rlDDPGAgent | rlDQNAgent | rlPGAgent | rlPPOAgent | rlQAgent | rlSACAgent |
rlSARSAAgent | rlTD3Agent

More About
• “What Is Reinforcement Learning?” on page 1-3
• “Train Reinforcement Learning Agents” on page 5-2

 Reinforcement Learning Agents

3-5

Q-Learning Agents
The Q-learning algorithm is a model-free, online, off-policy reinforcement learning method. A Q-
learning agent is a value-based reinforcement learning agent that trains a critic to estimate the
return or future rewards.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

Q-learning agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent explores the action space using epsilon-greedy exploration. During each
control interval the agent selects a random action with probability ϵ, otherwise it selects an action
greedily with respect to the value function with probability 1-ϵ. This greedy action is the action for
which the value function is greatest.

Critic Function
To estimate the value function, a Q-learning agent maintains a critic Q(S,A), which is a table or
function approximator. The critic takes observation S and action A as inputs and returns the
corresponding expectation of the long-term reward.

For more information on creating critics for value function approximation, see “Create Policy and
Value Function Representations” on page 4-2.

When training is complete, the trained value function approximator is stored in critic Q(S,A).

Agent Creation
To create a Q-learning agent:

1 Create a critic using an rlQValueRepresentation object.
2 Specify agent options using an rlQAgentOptions object.
3 Create the agent using an rlQAgent object.

Training Algorithm
Q-learning agents use the following training algorithm. To configure the training algorithm, specify
options using an rlQAgentOptions object.

• Initialize the critic Q(S,A) with random values.
• For each training episode:

1 Set the initial observation S.
2 Repeat the following for each step of the episode until S is a terminal state.

a For the current observation S, select a random action A with probability ϵ. Otherwise,
select the action for which the critic value function is greatest.

3 Create Agents

3-6

A = argmax
A

Q S, A

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
b Execute action A. Observe the reward R and next observation S'.
c If S' is a terminal state, set the value function target y to R. Otherwise, set it to

y = R + γmax
A

Q S′, A

To set the discount factor γ, use the DiscountFactor option.
d Compute the critic parameter update.

ΔQ = y − Q S, A
e Update the critic using the learning rate α.

Q S, A = Q S, A + α ∗ ΔQ

Specify the learning rate when you create the critic representation by setting the
LearnRate option in the rlRepresentationOptions object.

f Set the observation S to S'.

See Also
rlQAgent | rlQAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-8

 Q-Learning Agents

3-7

SARSA Agents
The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A SARSA
agent is a value-based reinforcement learning agent that trains a critic to estimate the return or
future rewards.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

SARSA agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent explores the action space using epsilon-greedy exploration. During each
control interval, the agent either selects a random action with probability ϵ or selects an action
greedily with respect to the value function with probability 1-ϵ. This greedy action is the action for
which the value function is greatest.

Critic Function
To estimate the value function, a SARSA agent maintains a critic Q(S,A), which is a table or function
approximator. The critic takes observation S and action A as inputs and returns the corresponding
expectation of the long-term reward.

For more information on creating critics for value function approximation, see “Create Policy and
Value Function Representations” on page 4-2.

When training is complete, the trained value function approximator is stored in critic Q(S,A).

Agent Creation
To create a SARSA agent:

1 Create a critic using an rlQValueRepresentation object.
2 Specify agent options using an rlSARSAAgentOptions object.
3 Create the agent using an rlSARSAAgent object.

Training Algorithm
SARSA agents use the following training algorithm. To configure the training algorithm, specify
options using an rlSARSAAgentOptions object.

• Initialize the critic Q(S,A) with random values.
• For each training episode:

1 Set the initial observation S.
2 For the current observation S, select a random action A with probability ϵ. Otherwise, select

the action for which the critic value function is greatest.

A = argmax
A

Q S, A

3 Create Agents

3-8

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
3 Repeat the following for each step of the episode until S is a terminal state:

a Execute action A. Observe the reward R and next observation S'.
b Select an action A' by following the policy from state S'.

A′ = max
A′

Q S′, A′

c If S' is a terminal state, set the value function target y to R. Otherwise, set it to

y = R + γQ S′, A′

To set the discount factor γ, use the DiscountFactor option.
d Compute the critic parameter update.

ΔQ = y − Q S, A
e Update the critic using the learning rate α.

Q S, A = Q S, A + α ∗ ΔQ

Specify the learning rate when you create the critic representation by setting the
LearnRate option in the rlRepresentationOptions object.

f Set the observation S to S'.
g Set the action A to A'.

See Also
rlSARSAAgent | rlSARSAAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Train Reinforcement Learning Agent in Basic Grid World” on page 1-8

 SARSA Agents

3-9

Deep Q-Network Agents
The deep Q-network (DQN) algorithm is a model-free, online, off-policy reinforcement learning
method. A DQN agent is a value-based reinforcement learning agent that trains a critic to estimate
the return or future rewards. DQN is a variant of Q-learning. For more information on Q-learning, see
“Q-Learning Agents” on page 3-6.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

DQN agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Discrete

During training, the agent:

• Updates the critic properties at each time step during learning.
• Explores the action space using epsilon-greedy exploration. During each control interval, the

agent either selects a random action with probability ϵ or selects an action greedily with respect
to the value function with probability 1-ϵ. This greedy action is the action for which the value
function is greatest.

• Stores past experiences using a circular experience buffer. The agent updates the critic based on a
mini-batch of experiences randomly sampled from the buffer.

Critic Function
To estimate the value function, a DQN agent maintains two function approximators:

• Critic Q(S,A) — The critic takes observation S and action A as inputs and returns the
corresponding expectation of the long-term reward.

• Target critic Q'(S,A) — To improve the stability of the optimization, the agent periodically updates
the target critic based on the latest critic parameter values.

Both Q(S,A) and Q'(S,A) have the same structure and parameterization.

For more information on creating critics for value function approximation, see “Create Policy and
Value Function Representations” on page 4-2.

When training is complete, the trained value function approximator is stored in critic Q(S,A).

Agent Creation
You can create a DQN agent with a critic representation based on the observation and action
specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 Create Agents

3-10

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlDQNAgentOptions object.
5 Create the agent using an rlDQNAgent object.

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create a critic using an rlQValueRepresentation object.
2 Specify agent options using an rlDQNAgentOptions object.
3 Create the agent using an rlDQNAgent object.

DQN agents support critics that use recurrent deep neural networks as functions approximators.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
DQN agents use the following training algorithm, in which they update their critic model at each time
step. To configure the training algorithm, specify options using an rlDQNAgentOptions object.

• Initialize the critic Q(s,a) with random parameter values θQ, and initialize the target critic with the
same values: θQ′ = θQ.

• For each training time step:

1 For the current observation S, select a random action A with probability ϵ. Otherwise, select
the action for which the critic value function is greatest.

A = argmax
A

Q S, A θQ

To specify ϵ and its decay rate, use the EpsilonGreedyExploration option.
2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

Amax = argmax
A′

Q Si′, A′ θQ

yi = Ri + γQ′ Si′, Amax θQ′
double DQN

yi = Ri + γmax
A′

Q′ Si′, A′ θQ′ DQN

To set the discount factor γ, use the DiscountFactor option. To use double DQN, set the
UseDoubleDQN option to true.

 Deep Q-Network Agents

3-11

6 Update the critic parameters by one-step minimization of the loss L across all sampled
experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai θQ

2

7 Update the target critic parameters depending on the target update method For more
information, see “Target Update Methods” on page 3-12.

8 Update the probability threshold ϵ for selecting a random action based on the decay rate you
specify in the EpsilonGreedyExploration option.

Target Update Methods
DQN agents update their target critic parameters using one of the following target update methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

θQ′ = τθQ + 1 − τ θQ′

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlDQNAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
[1] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. “Playing Atari with Deep Reinforcement Learning.”
ArXiv:1312.5602 [Cs], December 19, 2013. https://arxiv.org/abs/1312.5602.

See Also
rlDQNAgent | rlDQNAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

3 Create Agents

3-12

https://arxiv.org/abs/1312.5602

Policy Gradient Agents
The policy gradient (PG) algorithm is a model-free, online, on-policy reinforcement learning method.
A PG agent is a policy-based reinforcement learning agent that directly computes an optimal policy
that maximizes the long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

PG agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

During training, a PG agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Completes a full training episode using the current policy before learning from the experience and
updating the policy parameters.

Actor and Critic Functions
PG agents represent the policy using an actor function approximator μ(S). The actor takes
observation S and returns the probabilities of taking each action in the action space when in state S.

To reduce the variance during gradient estimation, PG agents can use a baseline value function,
which is estimated using a critic function approximator, V(S). The critic computes the value function
for a given observation state.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Agent Creation
You can create a PG agent with default actor and critic representations based on the observation and
action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlPGAgentOptions object.
5 Create the agent using an rlPGAgent object.

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

 Policy Gradient Agents

3-13

1 Create an actor representation using an rlStochasticActorRepresentation object.
2 If you are using a baseline function, create a critic using an rlValueRepresentation object.
3 Specify agent options using the rlPGAgentOptions object.
4 Create the agent using an rlPGAgent object.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
PG agents use the REINFORCE (Monte Carlo policy gradient) algorithm either with or without a
baseline. To configure the training algorithm, specify options using an rlPGAgentOptions object.

REINFORCE Algorithm

1 Initialize the actor μ(S) with random parameter values θμ.
2 For each training episode, generate the episode experience by following actor policy μ(S). To

select an action, the actor generates probabilities for each action in the action space, then the
agent randomly selects an action based on the probability distribution. The agent takes actions
until it reaches the terminal state ST. The episode experience consists of the sequence

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST

Here, St is a state observation, At+1 is an action taken from that state, St+1 is the next state, and
Rt+1 is the reward received for moving from St to St+1.

3 For each state in the episode sequence, that is, for t = 1, 2, …, T-1, calculate the return Gt, which
is the discounted future reward.

Gt = ∑
k = t

T
γk− tRk

4 Accumulate the gradients for the actor network by following the policy gradient to maximize the
expected discounted reward. If the EntropyLossWeight option is greater than zero, then
additional gradients are accumulated to minimize the entropy loss function.

dθμ = ∑
t = 1

T − 1
Gt∇θμlnμ St θμ

5 Update the actor parameters by applying the gradients.

θμ = θμ + αdθμ

Here, α is the learning rate of the actor. Specify the learning rate when you create the actor
representation by setting the LearnRate option in the rlRepresentationOptions object. For
simplicity, this step shows a gradient update using basic stochastic gradient descent. The actual
gradient update method depends on the optimizer you specify using
rlRepresentationOptions.

6 Repeat steps 2 through 5 for each training episode until training is complete.

REINFORCE with Baseline Algorithm

1 Initialize the actor μ(S) with random parameter values θμ.

3 Create Agents

3-14

2 Initialize the critic V(S) with random parameter values θQ.
3 For each training episode, generate the episode experience by following the actor policy μ(S).

The episode experience consists of the sequence

S0, A0, R1, S1, …, ST − 1, AT − 1, RT, ST

4 For t = 1, 2, …, T:

• Calculate the return Gt, which is the discounted future reward.

Gt = ∑
k = t

T
γk− tRk

• Compute the advantage function δt using the baseline value function estimate from the critic.

δt = Gt− V St θV

5 Accumulate the gradients for the critic network.

dθV = ∑
t = 1

T − 1
δt∇θVV St θV

6 Accumulate the gradients for the actor network. If the EntropyLossWeight option is greater
than zero, then additional gradients are accumulated to minimize the entropy loss function.

dθμ = ∑
t = 1

T − 1
δt∇θμlnμ St θμ

7 Update the critic parameters θV.

θV = θV + βdθV

Here, β is the learning rate of the critic. Specify the learning rate when you create the critic
representation by setting the LearnRate option in the rlRepresentationOptions object.

8 Update the actor parameters θμ.

θμ = θμ + αdθμ

9 Repeat steps 3 through 8 for each training episode until training is complete.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using rlRepresentationOptions.

References
[1] Williams, Ronald J. “Simple Statistical Gradient-Following Algorithms for Connectionist

Reinforcement Learning.” Machine Learning 8, no. 3–4 (May 1992): 229–56. https://doi.org/
10.1007/BF00992696.

See Also
rlPGAgent | rlPGAgentOptions

 Policy Gradient Agents

3-15

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

3 Create Agents

3-16

Deep Deterministic Policy Gradient Agents
The deep deterministic policy gradient (DDPG) algorithm is a model-free, online, off-policy
reinforcement learning method. A DDPG agent is an actor-critic reinforcement learning agent that
computes an optimal policy that maximizes the long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

DDPG agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Continuous

During training, a DDPG agent:

• Updates the actor and critic properties at each time step during learning.
• Stores past experiences using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.
• Perturbs the action chosen by the policy using a stochastic noise model at each training step.

Actor and Critic Functions
To estimate the policy and value function, a DDPG agent maintains four function approximators:

• Actor μ(S) — The actor takes observation S and returns the corresponding action that maximizes
the long-term reward.

• Target actor μ'(S) — To improve the stability of the optimization, the agent periodically updates
the target actor based on the latest actor parameter values.

• Critic Q(S,A) — The critic takes observation S and action A as inputs and returns the
corresponding expectation of the long-term reward.

• Target critic Q'(S,A) — To improve the stability of the optimization, the agent periodically updates
the target critic based on the latest critic parameter values.

Both Q(S,A) and Q'(S,A) have the same structure and parameterization, and both μ(S) and μ'(S) have
the same structure and parameterization.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Agent Creation
You can create a DDPG agent with default actor and critic representations based on the observation
and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

 Deep Deterministic Policy Gradient Agents

3-17

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlDDPGAgentOptions object.
5 Create the agent using an rlDDPGAgent object.

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create an actor using an rlDeterministicActorRepresentation object.
2 Create a critic using an rlQValueRepresentation object.
3 Specify agent options using an rlDDPGAgentOptions object.
4 Create the agent using an rlDDPGAgent object.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
DDPG agents use the following training algorithm, in which they update their actor and critic models
at each time step. To configure the training algorithm, specify options using an
rlDDPGAgentOptions object.

• Initialize the critic Q(S,A) with random parameter values θQ, and initialize the target critic with
the same random parameter values: θQ′ = θQ.

• Initialize the actor μ(S) with random parameter values θμ, and initialize the target actor with the
same parameter values: θμ′ = θμ.

• For each training time step:

1 For the current observation S, select action A = μ(S) + N, where N is stochastic noise from
the noise model. To configure the noise model, use the NoiseOptions option.

2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

yi = Ri + γQ′ Si′, μ′ Si′ θμ θQ′

The value function target is the sum of the experience reward Ri and the discounted future
reward. To specify the discount factor γ, use the DiscountFactor option.

To compute the cumulative reward, the agent first computes a next action by passing the next
observation Si' from the sampled experience to the target actor. The agent finds the
cumulative reward by passing the next action to the target critic.

6 Update the critic parameters by minimizing the loss L across all sampled experiences.

L = 1
M ∑

i = 1

M
yi− Q Si, Ai θQ

2

3 Create Agents

3-18

7 Update the actor parameters using the following sampled policy gradient to maximize the
expected discounted reward.

∇θμ J ≈ 1
M ∑

i = 1

M
GaiGμi

Gai = ∇AQ Si, A θQ where A = μ Si θμ

Gμi = ∇θμμ Si θμ

Here, Gai is the gradient of the critic output with respect to the action computed by the actor
network, and Gμi is the gradient of the actor output with respect to the actor parameters. Both
gradients are evaluated for observation Si.

8 Update the target actor and critic parameters depending on the target update method. For
more information see “Target Update Methods” on page 3-19.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using rlRepresentationOptions.

Target Update Methods
DDPG agents update their target actor and critic parameters using one of the following target update
methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

θQ′ = τθQ + 1 − τ θQ′ critic parameters
θμ′ = τθμ + 1 − τ θμ′ actor parameters

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlDDPGAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
[1] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,

David Silver, and Daan Wierstra. “Continuous Control with Deep Reinforcement Learning.”
ArXiv:1509.02971 [Cs, Stat], September 9, 2015. https://arxiv.org/abs/1509.02971.

See Also
rlDDPGAgent | rlDDPGAgentOptions

 Deep Deterministic Policy Gradient Agents

3-19

https://arxiv.org/abs/1509.02971

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

3 Create Agents

3-20

Twin-Delayed Deep Deterministic Policy Gradient Agents
The twin-delayed deep deterministic policy gradient (TD3) algorithm is a model-free, online, off-policy
reinforcement learning method. A TD3 agent is an actor-critic reinforcement learning agent that
computes an optimal policy that maximizes the long-term reward.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

The TD3 algorithm is an extension of the DDPG algorithm. DDPG agents can overestimate value
functions, which can produce suboptimal policies. To reduce value function overestimation includes
the following modifications of the DDPG algorithm.

1 A TD3 agent learns two Q-value functions and uses the minimum value function estimate during
policy updates.

2 A TD3 agent updates the policy and targets less frequently than the Q functions.
3 When updating the policy, a TD3 agent adds noise to the target action, which makes the policy

less likely to exploit actions with high Q-value estimates.

You can use a TD3 agent to implement one of the following training algorithms, depending on the
number of critics you specify.

• TD3 — Train the agent with two Q-value functions. This algorithm implements all three of the
preceding modifications.

• Delayed DDPG — Train the agent with a single Q-value function. This algorithm trains a DDPG
agent with target policy smoothing and delayed policy and target updates.

TD3 agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Continuous or discrete Continuous

During training, a TD3 agent:

• Updates the actor and critic properties at each time step during learning.
• Stores past experiences using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.
• Perturbs the action chosen by the policy using a stochastic noise model at each training step.

Actor and Critic Functions
To estimate the policy and value function, a TD3 agent maintains the following function
approximators:

• Deterministic actor μ(S) — The actor takes observation S and returns the corresponding action
that maximizes the long-term reward.

• Target actor μ'(S) — To improve the stability of the optimization, the agent periodically updates
the target actor based on the latest actor parameter values.

• One or two Q-value critics Qk(S,A) — The critics take observation S and action A as inputs and
returns the corresponding expectation of the long-term reward.

 Twin-Delayed Deep Deterministic Policy Gradient Agents

3-21

• One or two target critics Q'k(S,A) — To improve the stability of the optimization, the agent
periodically updates the target critics based on the latest parameter values of the critics. The
number of target critics matches the number of critics.

Both μ(S) and μ'(S) have the same structure and parameterization.

For each critic, Qk(S,A) and Q'k(S,A) have the same structure and parameterization.

When using two critics, Q1(S,A) and Q2(S,A), each critic can have a different structure, though TD3
works best when the critics have the same structure. When the critics have the same structure, they
must have different initial parameter values.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Agent Creation
You can create a TD3 agent with default actor and critic representations based on the observation
and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlTD3AgentOptions object.
5 Create the agent using an rlTD3Agent object.

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create an actor using an rlDeterministicActorRepresentation object.
2 Create one or two critics using rlQValueRepresentation objects.
3 Specify agent options using an rlTD3AgentOptions object.
4 Create the agent using an rlTD3Agent object.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
TD3 agents use the following training algorithm, in which they update their actor and critic models at
each time step. To configure the training algorithm, specify options using an rlDDPGAgentOptions
object. Here, K = 2 is the number of critics and k is the critic index.

3 Create Agents

3-22

• Initialize each critic Qk(S,A) with random parameter values θQk, and initialize each target critic
with the same random parameter values: θQk′ = θQk.

• Initialize the actor μ(S) with random parameter values θμ, and initialize the target actor with the
same parameter values: θμ′ = θμ.

• For each training time step:

1 For the current observation S, select action A = μ(S) + N, where N is stochastic noise from
the noise model. To configure the noise model, use the ExplorationModel option.

2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 If S'i is a terminal state, set the value function target yi to Ri. Otherwise, set it to

yi = Ri + γ * min
k

Qk′ Si′, clip μ′ Si′ θμ + ε θQk′

The value function target is the sum of the experience reward Ri and the minimum discounted
future reward from the critics. To specify the discount factor γ, use the DiscountFactor
option.

To compute the cumulative reward, the agent first computes a next action by passing the next
observation S'i from the sampled experience to the target actor. Then, the agent adds noise ε
to the computed action using the TargetPolicySmoothModel, and clips the action based on
the upper and lower noise limits. The agent finds the cumulative rewards by passing the next
action to the target critics.

6 At every time training step, update the parameters of each critic by minimizing the loss Lk
across all sampled experiences.

Lk = 1
M ∑

i = 1

M
yi− Qk Si, Ai θQk

2

7 Every D1 steps, update the actor parameters using the following sampled policy gradient to
maximize the expected discounted reward. To set D1, use the PolicyUpdateFrequency
option.

∇θμ J ≈ 1
M ∑

i = 1

M
GaiGμi

Gai = ∇Amin
k

Qk Si, A θQ where A = μ Si θμ

Gμi = ∇θμμ Si θμ

Here, Gai is the gradient of the minimum critic output with respect to the action computed by
the actor network, and Gμi is the gradient of the actor output with respect to the actor
parameters. Both gradients are evaluated for observation Si.

8 Every D2 steps, update the target actor and critics depending on the target update method. To
specify D2, use the TargetUpdateFrequency option. For more information, see “Target
Update Methods” on page 3-24.

 Twin-Delayed Deep Deterministic Policy Gradient Agents

3-23

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer you specify
using rlRepresentationOptions.

Target Update Methods
TD3 agents update their target actor and critic parameters using one of the following target update
methods.

• Smoothing — Update the target parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

θQk′ = τθQk + 1 − τ θQk′ critic parameters
θμ′ = τθμ + 1 − τ θμ′ actor parameters

• Periodic — Update the target parameters periodically without smoothing (TargetSmoothFactor
= 1). To specify the update period, use the TargetUpdateFrequency parameter.

θQk′ = θQk

θμ′ = θμ

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlTD3AgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
[1] Fujimoto, Scott, Herke van Hoof, and David Meger. "Addressing Function Approximation Error in

Actor-Critic Methods". ArXiv:1802.09477 [Cs, Stat], 22 October 2018. https://arxiv.org/abs/
1802.09477.

See Also
rlTD3Agent | rlTD3AgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-168

3 Create Agents

3-24

https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477

Actor-Critic Agents
You can use the actor-critic (AC) agent, which uses a model-free, online, on-policy reinforcement
learning method, to implement actor-critic algorithms, such as A2C and A3C. The goal of this agent is
to optimize the policy (actor) directly and train a critic to estimate the return or future rewards [1].

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

AC agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

During training, an AC agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before updating the
actor and critic properties.

Actor and Critic Functions
To estimate the policy and value function, an AC agent maintains two function approximators:

• Actor μ(S) — The actor takes observation S and returns the probabilities of taking each action in
the action space when in state S.

• Critic V(S) — The critic takes observation S and returns the corresponding expectation of the
discounted long-term reward.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Agent Creation
You can create an AC agent with default actor and critic representations based on the observation
and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlACAgentOptions object.
5 Create the agent using an rlACAgent object.

 Actor-Critic Agents

3-25

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create an actor using an rlStochasticActorRepresentation object.
2 Create a critic using an rlValueRepresentation object.
3 Specify agent options using an rlACAgentOptions object.
4 Create the agent using an rlACAgent object.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
AC agents use the following training algorithm. To configure the training algorithm, specify options
using an rlACAgentOptions object.

1 Initialize the actor μ(S) with random parameter values θμ.
2 Initialize the critic V(S) with random parameter values θV.
3 Generate N experiences by following the current policy. The episode experience sequence is

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the action space
using μ(St) and randomly selects action At based on the probability distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the training
episode, ts = 1. For each subsequent set of N experiences in the same training episode, ts = ts +
N.

For each training episode that does not contain a terminal state, N is equal to the
NumStepsToLookAhead option value. Otherwise, N is less than NumStepsToLookAhead and SN
is the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return Gt, which is the sum of the
reward for that step and the discounted future reward. If Sts+N is not a terminal state, the
discounted future reward includes the discounted state value function, computed using the critic
network V.

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N θV

Here, b is 0 if Sts+N is a terminal state and 1 otherwise.

To specify the discount factor γ, use the DiscountFactor option.
5 Compute the advantage function Dt.

Dt = Gt − V St θV

3 Create Agents

3-26

6 Accumulate the gradients for the actor network by following the policy gradient to maximize the
expected discounted reward.

dθμ = ∑
t = 1

N
∇θμlnμ St θμ ∗ Dt

7 Accumulate the gradients for the critic network by minimizing the mean squared error loss
between the estimated value function V (t) and the computed target return Gt across all N
experiences. If the EntropyLossWeight option is greater than zero, then additional gradients
are accumulated to minimize the entropy loss function.

dθV = ∑
t = 1

N
∇θV Gt − V St θV

2

8 Update the actor parameters by applying the gradients.

θμ = θμ + αdθμ

Here, α is the learning rate of the actor. Specify the learning rate when you create the actor
representation by setting the LearnRate option in the rlRepresentationOptions object.

9 Update the critic parameters by applying the gradients.

θV = θV + βdθV

Here, β is the learning rate of the critic. Specify the learning rate when you create the critic
representation by setting the LearnRate option in the rlRepresentationOptions object.

10 Repeat steps 3 through 9 for each training episode until training is complete.

For simplicity, the actor and critic updates in this algorithm show a gradient update using basic
stochastic gradient descent. The actual gradient update method depends on the optimizer specified
using rlRepresentationOptions.

References
[1] Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim

Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous Methods for Deep
Reinforcement Learning.” ArXiv:1602.01783 [Cs], February 4, 2016. https://arxiv.org/abs/
1602.01783.

See Also
rlACAgent | rlACAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

 Actor-Critic Agents

3-27

https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783

Proximal Policy Optimization Agents
Proximal policy optimization (PPO) is a model-free, online, on-policy, policy gradient reinforcement
learning method. This algorithm is a type of policy gradient training that alternates between sampling
data through environmental interaction and optimizing a clipped surrogate objective function using
stochastic gradient descent. The clipped surrogate objective function improves training stability by
limiting the size of the policy change at each step [1].

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

PPO agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Discrete or continuous

During training, a PPO agent:

• Estimates probabilities of taking each action in the action space and randomly selects actions
based on the probability distribution.

• Interacts with the environment for multiple steps using the current policy before using mini-
batches to update the actor and critic properties over multiple epochs.

Actor and Critic Functions
To estimate the policy and value function, a PPO agent maintains two function approximators:

• Actor μ(S) — The actor takes observation S and returns the probabilities of taking each action in
the action space when in state S.

• Critic V(S) — The critic takes observation S and returns the corresponding expectation of the
discounted long-term reward.

When training is complete, the trained optimal policy is stored in actor μ(S).

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Agent Creation
You can create a PPO agent with default actor and critic representations based on the observation
and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 Specify agent options using an rlPPOAgentOptions object.
4 Create the agent using an rlPPOAgent object.

3 Create Agents

3-28

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create an actor using an rlStochasticActorRepresentation object.
2 Create a critic using an rlValueRepresentation object.
3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM

layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlPPOAgentOptions object.
5 Create the agent using the rlPPOAgent function.

PPO agents support actors and critics that use recurrent deep neural networks as functions
approximators.

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
PPO agents use the following training algorithm. To configure the training algorithm, specify options
using an rlPPOAgentOptions object.

1 Initialize the actor μ(S) with random parameter values θμ.
2 Initialize the critic V(S) with random parameter values θV.
3 Generate N experiences by following the current policy. The experience sequence is

Sts, Ats, Rts + 1, Sts + 1, …, Sts + N − 1, Ats + N − 1, Rts + N, Sts + N

Here, St is a state observation, At is an action taken from that state, St+1 is the next state, and Rt
+1 is the reward received for moving from St to St+1.

When in state St, the agent computes the probability of taking each action in the action space
using μ(St) and randomly selects action At based on the probability distribution.

ts is the starting time step of the current set of N experiences. At the beginning of the training
episode, ts = 1. For each subsequent set of N experiences in the same training episode, ts ← ts +
N.

For each experience sequence that does not contain a terminal state, N is equal to the
ExperienceHorizon option value. Otherwise, N is less than ExperienceHorizon and SN is
the terminal state.

4 For each episode step t = ts+1, ts+2, …, ts+N, compute the return and advantage function using
the method specified by the AdvantageEstimateMethod option.

• Finite Horizon (AdvantageEstimateMethod = "finite-horizon") — Compute the
return Gt, which is the sum of the reward for that step and the discounted future reward [2].

Gt = ∑
k = t

ts + N
γk− tRk + bγN − t + 1V Sts + N θV

 Proximal Policy Optimization Agents

3-29

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. That is, if Sts+N is not a terminal state,
the discounted future reward includes the discounted state value function, computed using
the critic network V.

Compute the advantage function Dt.

Dt = Gt − V St θV

• Generalized Advantage Estimator (AdvantageEstimateMethod = "gae") — Compute
the advantage function Dt, which is the discounted sum of temporal difference errors [3].

Dt = ∑
k = t

ts + N − 1
γλ k− tδk

δk = Rt + bγV St θV

Here, b is 0 if Sts+N is a terminal state and 1 otherwise. λ is a smoothing factor specified using
the GAEFactor option.

Compute the return Gt.

Gt = Dt − V St θV

To specify the discount factor γ for either method, use the DiscountFactor option.
5 Learn from mini-batches of experiences over K epochs. To specify K, use the NumEpoch option.

For each learning epoch:

a Sample a random mini-batch data set of size M from the current set of experiences. To
specify M, use the MiniBatchSize option. Each element of the mini-batch data set contains
a current experience and the corresponding return and advantage function values.

b Update the critic parameters by minimizing the loss Lcritic across all sampled mini-batch data.

Lcritic θV = 1
M ∑

i = 1

M
Gi− V Si θV

2

c Update the actor parameters by minimizing the loss Lactor across all sampled mini-batch data.
If the EntropyLossWeight option is greater than zero, then additional entropy loss is
added to Lactor, which encourages policy exploration.

Lactor θμ = − 1
M ∑

i = 1

M
min ri θμ ∗ Di, ci θμ ∗ Di

ri θμ =
μAi Si θμ

μAi Si θμ, old

ci θμ = max min ri θμ , 1 + ε , 1 − ε

Here:

• Di and Gi are the advantage function and return value for the ith element of the mini-
batch, respectively.

• μi(Si|θμ) is the probability of taking action Ai when in state Si, given the updated policy
parameters θμ.

• μi(Si|θμ,old) is the probability of taking action Ai when in state Si, given the previous policy
parameters (θμ,old) from before the current learning epoch.

3 Create Agents

3-30

• ε is the clip factor specified using the ClipFactor option.
6 Repeat steps 3 through 5 until the training episode reaches a terminal state.

References
[1] Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal Policy

Optimization Algorithms.” ArXiv:1707.06347 [Cs], July 19, 2017. https://arxiv.org/abs/
1707.06347.

[2] Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. “Asynchronous Methods for Deep
Reinforcement Learning.” ArXiv:1602.01783 [Cs], February 4, 2016. https://arxiv.org/abs/
1602.01783.

[3] Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. “High-
Dimensional Continuous Control Using Generalized Advantage Estimation.”
ArXiv:1506.02438 [Cs], October 20, 2018. https://arxiv.org/abs/1506.02438.

See Also
rlPPOAgent | rlPPOAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

 Proximal Policy Optimization Agents

3-31

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1506.02438

Soft Actor-Critic Agents
The soft actor-critic (SAC) algorithm is a model-free, online, off-policy, actor-critic reinforcement
learning method. The SAC algorithm computes an optimal policy that maximizes both the long-term
expected reward and the entropy of the policy. The policy entropy is a measure of policy uncertainty
given the state. A higher entropy value promotes more exploration. Maximizing both the reward and
the entropy balances exploration and exploitation of the environment.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

Reinforcement Learning Toolbox software, uses two Q-value function critics, which prevents
overestimation of the value function. Other implementations of the SAC algorithm use an additional
value function critic.

SAC agents can be trained in environments with the following observation and action spaces.

Observation Space Action Space
Discrete or continuous Continuous

During training, a SAC agent:

• Updates the actor and critic properties at regular intervals during learning.
• Estimates the mean and standard deviation for selecting an action in the continuous action space

and randomly selects actions based on the probability distribution.
• Updates an entropy weight term that balances the expected return and the entropy of the policy.
• Stores past experience using a circular experience buffer. The agent updates the actor and critic

using a mini-batch of experiences randomly sampled from the buffer.

Actor and Critic Functions
To estimate the policy and value function, a SAC agent maintains the following function
approximators:

• Stochastic actor μ(S) — The actor takes observation S and returns the action probability density
function. The agent randomly selects actions based on this density function.

• One or two Q-value critics Qk(S,A) — The critics take observation S and action A as inputs and
return the corresponding expectation of the value function, which includes both the long-term
reward and entropy.

• One or two target critics Q'k(S,A) — To improve the stability of the optimization, the agent
periodically updates the target critics based on the latest parameter values of the critics. The
number of target critics matches the number of critics.

When using two critics, Q1(S,A) and Q2(S,A), each critic can have a different structure. When the
critics have the same structure, they must have different initial parameter values.

For each critic, Qk(S,A) and Q'k(S,A) have the same structure and parameterization.

When training is complete, the trained optimal policy is stored in actor μ(S).

3 Create Agents

3-32

Action Generation

The actor in a SAC agent generates mean and standard deviation outputs. To select an action, the
actor first randomly selects an unbounded action from a Gaussian distribution with these parameters.
During training, the SAC agent uses the unbounded probability distribution to compute the entropy of
the policy for the given observation.

If the action space of the SAC agent is bounded, the actor generates bounded actions by applying
tanh and scaling operations to the unbounded action.

Agent Creation
You can create a SAC agent with default actor and critic representations based on the observation
and action specifications from the environment. To do so, perform the following steps.

1 Create observation specifications for your environment. If you already have an environment
interface object, you can obtain these specifications using getObservationInfo.

2 Create action specifications for your environment. If you already have an environment interface
object, you can obtain these specifications using getActionInfo.

3 If needed, specify the number of neurons in each learnable layer or whether to use an LSTM
layer. To do so, create an agent initialization option object using
rlAgentInitializationOptions.

4 If needed, specify agent options using an rlSACAgentOptions object.
5 Create the agent using an rlSACAgent object.

Alternatively, you can create actor and critic representations and use these representations to create
your agent. In this case, ensure that the input and output dimensions of the actor and critic
representations match the corresponding action and observation specifications of the environment.

1 Create a stochastic actor using an rlStochasticActorRepresentation object. For SAC
agents, the actor network must not contain a tanhLayer and scalingLayer in the mean output
path.

2 Create one or two critics using rlQValueRepresentation objects.
3 Specify agent options using an rlSACAgentOptions object.
4 Create the agent using an rlSACAgent object.

SAC agents do not support actors and critics that use recurrent deep neural networks as function
approximators.

 Soft Actor-Critic Agents

3-33

For more information on creating actors and critics for function approximation, see “Create Policy
and Value Function Representations” on page 4-2.

Training Algorithm
SAC agents use the following training algorithm, in which they periodically update their actor and
critic models and entropy weight. To configure the training algorithm, specify options using an
rlSACAgentOptions object. Here, K = 2 is the number of critics and k is the critic index.

• Initialize each critic Qk(S,A) with random parameter values θQk, and initialize each target critic
with the same random parameter values: θQk′ = θQk.

• Initialize the actor μ(S) with random parameter values θμ.
• Perform a warm start by taking a sequence of actions following the initial random policy in μ(S).

For each action, store the experience in the experience buffer. To specify the number of warm up
actions, use the NumWarmStartSteps option.

• For each training time step:

1 For the current observation S, select action A using the policy in μ(S).
2 Execute action A. Observe the reward R and next observation S'.
3 Store the experience (S,A,R,S') in the experience buffer.
4 Sample a random mini-batch of M experiences (Si,Ai,Ri,S'i) from the experience buffer. To

specify M, use the MiniBatchSize option.
5 Every DC steps, update the parameters of each critic by minimizing the loss Lk across all

sampled experiences. To specify DC, use the CriticUpdateFrequency option.

Lk = 1
M ∑

i = 1

M
yi− Qk Si, Ai θQk

2

If S'i is a terminal state, the value function target yi is equal to the experience reward Ri.
Otherwise, the value function target is the sum of Ri, the minimum discounted future reward
from the critics, and the weighted entropy H.

yi = Ri + γ * min
k

Qk′ Si′, Ai′ θQk′ + αH μ Si′ θμ

Here:

• A'i is the bounded action derived the unbounded output of the actor μ(S'i)
• γ is the discount factor, which you specify using the DiscountFactor option.
• H is the policy entropy, which is computed for the unbounded output of the actor
• α is the entropy tuning weight, which the SAC agent tunes during training.

6 Every DA steps, update the actor parameters by minimizing the following objective function.
To set DA, use the PolicyUpdateFrequency option.

Jμ = 1
M ∑

i = 1

M
−min

k
Qk′ Si, Ai θQk′ − αH μ Si θμ

7 Every DA steps, also update the entropy weight by minimizing the following loss function.

3 Create Agents

3-34

Lα = 1
M ∑

i = 1

M
αH′ − αH μ Si θμ

2

Here, H' is the target entropy, which you specify using the
EntropyWeightOptions.TargetEntropy option.

8 Every DT steps, update the target critics depending on the target update method. To specify
DT, use the TargetUpdateFrequency option. For more information, see “Target Update
Methods” on page 3-24.

9 Repeat steps 4 through 8 NG times, where NG is the number of gradient steps, which you
specify using the NumGradientStepsPerUpdate option.

Target Update Methods
SAC agents update their target critic parameters using one of the following target update methods.

• Smoothing — Update the target critic parameters at every time step using smoothing factor τ. To
specify the smoothing factor, use the TargetSmoothFactor option.

θQk′ = τθQk + 1 − τ θQk′

• Periodic — Update the target critic parameters periodically without smoothing
(TargetSmoothFactor = 1). To specify the update period, use the TargetUpdateFrequency
parameter.

θQk′ = θQk

• Periodic Smoothing — Update the target parameters periodically with smoothing.

To configure the target update method, create a rlSACAgentOptions object, and set the
TargetUpdateFrequency and TargetSmoothFactor parameters as shown in the following table.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing (default) 1 Less than 1
Periodic Greater than 1 1
Periodic smoothing Greater than 1 Less than 1

References
[1] Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash

Kumar, et al. 'Soft Actor-Critic Algorithms and Applications'. ArXiv:1812.05905 [Cs, Stat], 29
January 2019. https://arxiv.org/abs/1812.05905.

See Also
rlSACAgent | rlSACAgentOptions

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2

 Soft Actor-Critic Agents

3-35

https://arxiv.org/abs/1812.05905

• “Train Reinforcement Learning Agents” on page 5-2

3 Create Agents

3-36

Custom Agents
To implement your own custom reinforcement learning algorithms, you can create a custom agent by
creating a subclass of a custom agent class. You can then train and simulate this agent in MATLAB
and Simulink environments. For more information about creating classes in MATLAB, see “User-
Defined Classes”.

Create Template Class
To define your custom agent, first create a class that is a subclass of the rl.agent.CustomAgent
class. As an example, this topic describes the custom LQR agent trained in “Train Custom LQR
Agent” on page 5-227. As a starting point for your own agent, you can open and modify this custom
agent class. To add the example files to the MATLAB path and open the file, at the MATLAB command
line, type the following code.

addpath(fullfile(matlabroot,'examples','rl','main'));
edit LQRCustomAgent.m

After saving the class to your own working folder, you can remove the example files from the path.

rmpath(fullfile(matlabroot,'examples','rl','main'));

This class has the following class definition, which indicates the agent class name and the associated
abstract agent.

classdef LQRCustomAgent < rl.agent.CustomAgent

To define your agent, you must specify the following:

• Agent properties
• Constructor function
• Critic representation that estimates the discounted long-term reward (if required for learning)
• Actor representation that selects an action based on the current observation (if required for

learning)
• Required agent methods
• Optional agent methods

Agent Properties
In the properties section of the class file, specify any parameters necessary for creating and
training the agent. These parameters can include:

• Discount factor for discounting future rewards
• Configuration parameters for exploration models, such as noise models or epsilon-greedy

exploration
• Experience buffers for using replay memory
• Mini-batch sizes for sampling from the experience buffer
• Number of steps to look ahead during training

For more information on potential agent properties, see the option objects for the built-in
Reinforcement Learning Toolbox agents.

 Custom Agents

3-37

The rl.Agent.CustomAgent class already includes properties for the agent sample time
(SampleTime) and the action and observation specifications (ActionInfo and ObservationInfo,
respectively).

The custom LQR agent defines the following agent properties.

properties
 % Q
 Q

 % R
 R

 % Feedback gain
 K

 % Discount factor
 Gamma = 0.95

 % Critic
 Critic

 % Buffer for K
 KBuffer
 % Number of updates for K
 KUpdate = 1

 % Number for estimator update
 EstimateNum = 10
end

properties (Access = private)
 Counter = 1
 YBuffer
 HBuffer
end

Constructor Function
To create your custom agent, you must define a constructor function that:

• Defines the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Creates actor and critic representations as required by your training algorithm. For more
information, see “Create Policy and Value Function Representations” on page 4-2.

• Configures agent properties.
• Calls the constructor of the base abstract class.

For example, the LQRCustomAgent constructor defines continuous action and observation spaces
and creates a critic representation. The createCritic function is an optional helper function that
defines the critic representation.

function obj = LQRCustomAgent(Q,R,InitialK)
 % Check the number of input arguments
 narginchk(3,3);

3 Create Agents

3-38

 % Call the abstract class constructor
 obj = obj@rl.agent.CustomAgent();

 % Set the Q and R matrices
 obj.Q = Q;
 obj.R = R;

 % Define the observation and action spaces
 obj.ObservationInfo = rlNumericSpec([size(Q,1),1]);
 obj.ActionInfo = rlNumericSpec([size(R,1),1]);

 % Create the critic representation
 obj.Critic = createCritic(obj);

 % Initialize the gain matrix
 obj.K = InitialK;

 % Initialize the experience buffers
 obj.YBuffer = zeros(obj.EstimateNum,1);
 num = size(Q,1) + size(R,1);
 obj.HBuffer = zeros(obj.EstimateNum,0.5*num*(num+1));
 obj.KBuffer = cell(1,1000);
 obj.KBuffer{1} = obj.K;
end
end

Actor and Critic Representations
If your learning algorithm uses a critic representation to estimate the long-term reward, an actor for
selecting an action, or both, you must add these as agent properties. You must then create these
representations when you create your agent; that is, in the constructor function. For more
information on creating actors and critics, see “Create Policy and Value Function Representations” on
page 4-2.

For example, the custom LQR agent uses a critic representation, stored in its Critic property, and
no actor. The critic creation is implemented in the createCritic helper function, which is called
from the LQRCustomAgent constructor.
function critic = createCritic(obj)
 nQ = size(obj.Q,1);
 nR = size(obj.R,1);
 n = nQ+nR;
 w0 = 0.1*ones(0.5*(n+1)*n,1);
 critic = rlQValueRepresentation({@(x,u) computeQuadraticBasis(x,u,n),w0},...
 getObservationInfo(obj),getActionInfo(obj));
 critic.Options.GradientThreshold = 1;
end

In this case, the critic is an rlQValueRepresentation object. To create such a representation, you
must specify the handle to a custom basis function, in this case the computeQuadraticBasis
function. For more information on this critic representation, see “Train Custom LQR Agent” on page
5-227.

Required Functions
To create a custom reinforcement learning agent you must define the following implementation
functions. To call these functions in your own code, use the wrapper methods from the abstract base

 Custom Agents

3-39

class. For example, to call getActionImpl, use getAction. The wrapper methods have the same
input and output arguments as the implementation methods.

Function Description
getActionImpl Selects an action by evaluating the agent policy for a given

observation
getActionWithExplorationImpl Selects an action using the exploration model of the agent
learnImpl Learns from the current experiences and returns an action

with exploration

Within your implementation functions, to evaluate your actor and critic representations, you can use
the getValue, getAction, and getMaxQValue functions.

• To evaluate an rlValueRepresentation critic with only observation input signals, obtain the
state value function V using the following syntax.

V = getValue(Critic,Observation);

• To evaluate an rlQValueRepresentation critic with both observation and action input signals,
obtain the state-action value function Q using the following syntax.

Q = getValue(Critic,[Observation,Action]);

• To evaluate an rlQValueRepresentation critic with only observation input signals, obtain the
state-action value function Q for all possible discrete actions using the following syntax.

Q = getValue(Critic,Observation);

• A discrete action space rlQValueRepresentation critic, obtain the maximum Q state-action
value function Q for all possible discrete actions using the following syntax.

[MaxQ,MaxActionIndex] = getMaxQValue(Critic,Observation);

• To evaluate an actor representation (rlStochasticActorRepresentation or
rlDeterministicActorRepresentation), obtain the action A using the following syntax.

A = getAction(Actor,Observation);

For each of these cases, if your actor or critic network uses a recurrent neural network, the functions
can also return the current values of the network state after obtaining the corresponding network
output.

getActionImpl Function

The getActionImpl function is evaluates the policy of your agent and selects an action. This
function must have the following signature, where obj is the agent object, Observation is the
current observation, and action is the selected action.

function action = getActionImpl(obj,Observation)

For the custom LQR agent, you select an action by applying the u=-Kx control law.

function action = getActionImpl(obj,Observation)
 % Given the current state of the system, return an action
 action = -obj.K*Observation{:};
end

3 Create Agents

3-40

getActionWithExplorationImpl Function

The getActionWithExplorationImpl function selects an action using the exploration model of
your agent. Using this function you can implement algorithms such as epsilon-greedy exploration.
This function must have the following signature, where obj is the agent object, Observation is the
current observation, and action is the selected action.

function action = getActionWithExplorationImpl(obj,Observation)

For the custom LQR agent, the getActionWithExplorationImpl function adds random white
noise to an action selected using the current agent policy.

function action = getActionWithExplorationImpl(obj,Observation)
 % Given the current observation, select an action
 action = getAction(obj,Observation);

 % Add random noise to the action
 num = size(obj.R,1);
 action = action + 0.1*randn(num,1);
end

learnImpl Function

The learnImpl function defines how the agent learns from the current experience. This function
implements the custom learning algorithm of your agent by updating the policy parameters and
selecting an action with exploration. This function must have the following signature, where obj is
the agent object, exp is the current agent experience, and action is the selected action.

function action = learnImpl(obj,exp)

The agent experience is the cell array exp = {state,action,reward,nextstate,isdone}.

• state is the current observation.
• action is the current action.
• reward is the current reward.
• nextState is the next observation.
• isDone is a logical flag indicating that the training episode is complete.

For the custom LQR agent, the critic parameters are updated every N steps.

function action = learnImpl(obj,exp)
 % Parse the experience input
 x = exp{1}{1};
 u = exp{2}{1};
 dx = exp{4}{1};
 y = (x'*obj.Q*x + u'*obj.R*u);
 num = size(obj.Q,1) + size(obj.R,1);

 % Wait N steps before updating the critic parameters
 N = obj.EstimateNum;
 h1 = computeQuadraticBasis(x,u,num);
 h2 = computeQuadraticBasis(dx,-obj.K*dx,num);
 H = h1 - obj.Gamma* h2;
 if obj.Counter<=N
 obj.YBuffer(obj.Counter) = y;
 obj.HBuffer(obj.Counter,:) = H;

 Custom Agents

3-41

 obj.Counter = obj.Counter + 1;
 else
 % Update the critic parameters based on the batch of
 % experiences
 H_buf = obj.HBuffer;
 y_buf = obj.YBuffer;
 theta = (H_buf'*H_buf)\H_buf'*y_buf;
 obj.Critic = setLearnableParameters(obj.Critic,{theta});

 % Derive a new gain matrix based on the new critic parameters
 obj.K = getNewK(obj);

 % Reset the experience buffers
 obj.Counter = 1;
 obj.YBuffer = zeros(N,1);
 obj.HBuffer = zeros(N,0.5*num*(num+1));
 obj.KUpdate = obj.KUpdate + 1;
 obj.KBuffer{obj.KUpdate} = obj.K;
 end

 % Find and return an action with exploration
 action = getActionWithExploration(obj,exp{4});
end

Optional Functions
Optionally, you can define how your agent is reset at the start of training by specifying a resetImpl
function with the following function signature, where obj is the agent object. Using this function, you
can set the agent into a known or random condition before training.

function resetImpl(ob)

Also, you can define any other helper functions in your custom agent class as required. For example,
the custom LQR agent defines a createCritic function for creating the critic representation and a
getNewK function that derives the feedback gain matrix from the trained critic parameters.

Create Custom Agent
After you define your custom agent class, create an instance of it in the MATLAB workspace. For
example, to create the custom LQR agent, define the Q, R, and InitialK values and call the
constructor function.

Q = [10,3,1;3,5,4;1,4,9];
R = 0.5*eye(3);
K0 = place(A,B,[0.4,0.8,0.5]);
agent = LQRCustomAgent(Q,R,K0);

After validating the environment object, you can use it to train a reinforcement learning agent. For an
example that trains the custom LQR agent, see “Train Custom LQR Agent” on page 5-227.

See Also
train

3 Create Agents

3-42

More About
• “Reinforcement Learning Agents” on page 3-2
• “Create Policy and Value Function Representations” on page 4-2
• “Train Reinforcement Learning Agents” on page 5-2

 Custom Agents

3-43

Define Policies and Value Functions

• “Create Policy and Value Function Representations” on page 4-2
• “Import Policy and Value Function Representations” on page 4-11

4

Create Policy and Value Function Representations
A reinforcement learning policy is a mapping that selects the action that the agent takes based on
observations from the environment. During training, the agent tunes the parameters of its policy
representation to maximize the expected cumulative long-term reward.

Reinforcement learning agents estimate policies and value functions using function approximators
called actor and critic representations respectively. The actor represents the policy that selects the
best action to take, based on the current observation. The critic represents the value function that
estimates the expected cumulative long-term reward for the current policy.

Before creating an agent, you must create the required actor and critic representations using deep
neural networks, linear basis functions, or lookup tables. The type of function approximators you use
depends on your application.

For more information on agents, see “Reinforcement Learning Agents” on page 3-2.

Actors and Critic Representations
The Reinforcement Learning Toolbox software supports the following types of representations:

• V(S|θV) — Critics that estimate the expected cumulative long-term reward based on a given
observation S. You can create these critics using rlValueRepresentation.

• Q(S,A|θQ) — Critics that estimate the expected cumulative long-term reward for all possible
discrete action based on a given observation S. You can create these critics using
rlQValueRepresentation.

• Q(S|θQ) — Multi-output critics that estimate the expected cumulative long-term reward for all
possible discrete actions Ai given observation S. You can create these critics using
rlQValueRepresentation.

• μ(S|θμ) — Actors that select an action based on a given observation S. You can create these actors
using either rlDeterministicActorRepresentation or
rlStochasticActorRepresentation.

Each representation uses a function approximator with a corresponding set of parameters (θV, θQ, θμ),
which are computed during the learning process.

4 Define Policies and Value Functions

4-2

For systems with a limited number of discrete observations and discrete actions, you can store value
functions in a lookup table. For systems that have many discrete observations and actions and for
observation and action spaces that are continuous, storing the observations and actions is
impractical. For such systems, you can represent your actors and critics using deep neural networks
or custom (linear in the parameters) basis functions.

The following table summarizes the way in which you can use the four representation objects
available with the Reinforcement Learning Toolbox software, depending on the action and
observation spaces of your environment, and on the approximator and agent that you want to use.

Representations vs. Approximators and Agents

Representation Supported
Approximato
rs

Observation
Space

Action
Space

Supported
Agents

Value function critic, V(S) which you
create using

rlValueRepresentation

Table Discrete Not
applicable

PG, AC, PPO

Deep neural
network or
custom basis
function

Discrete or
continuous

Not
applicable

PG, AC, PPO

Q-value function critic, Q(S,A) which
you create using

rlQValueRepresentation

Table Discrete Discrete Q, DQN,
SARSA

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete Q, DQN,
SARSA

Deep neural
network or
custom basis
function

Discrete or
continuous

Continuous DDPG, TD3

Multi-output Q-value function critic,
Q(S,A) which you create using

rlQValueRepresentation

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete Q, DQN,
SARSA

Deterministic policy actor, π(S) which
you create using

rlDeterministicActorRepresent
ation

Deep neural
network or
custom basis
function

Discrete or
continuous

Continuous DDPG, TD3

Stochastic policy actor, π(S) which you
create using

rlStochasticActorRepresentati
on

Deep neural
network or
custom basis
function

Discrete or
continuous

Discrete PG, AC, PPO

Deep neural
network

Discrete or
continuous

Continuous PG, AC, PPO,
SAC

For more information on agents, see “Reinforcement Learning Agents” on page 3-2.

 Create Policy and Value Function Representations

4-3

Table Approximators
Representations based on lookup tables are appropriate for environments with a limited number of
discrete observations and actions. You can create two types of lookup table representations:

• Value tables, which store rewards for corresponding observations
• Q-tables, which store rewards for corresponding observation-action pairs

To create a table representation, first create a value table or Q-table using the rlTable function.
Then, create a representation for the table using either an rlValueRepresentation or
rlQValueRepresentation object. To configure the learning rate and optimization used by the
representation, use an rlRepresentationOptions object.

Deep Neural Network Approximators
You can create actor and critic function approximators using deep neural networks. Doing so uses the
Deep Learning Toolbox software features.

Network Input and Output Dimensions

The dimensions of your actor and critic networks must match the corresponding action and
observation specifications from the training environment object. To obtain the action and observation
dimensions for environment env, use the getActionInfo and getObservationInfo functions,
respectively. Then access the Dimensions property of the specification objects.

actInfo = getActionInfo(env);
actDimensions = actInfo.Dimensions;

obsInfo = getObservationInfo(env);
obsDimensions = obsInfo.Dimensions;

Networks for value function critics (such as the ones used in AC, PG, or PPO agents) must take only
observations as inputs and must have a single scalar output. For these networks, the dimensions of
the input layers must match the dimensions of the environment observation specifications. For more
information, see rlValueRepresentation.

Networks for single-output Q-value function critics (such as the ones used in Q, DQN, SARSA, DDPG,
TD3, and SAC agents) must take both observations and actions as inputs, and must have a single
scalar output. For these networks, the dimensions of the input layers must match the dimensions of
the environment specifications for both observations and actions. For more information, see
rlQValueRepresentation.

Networks for multi-output Q-value function critics (such as those used in Q, DQN, and SARSA agents)
take only observations as inputs and must have a single output layer with output size equal to the
number of discrete actions. For these networks the dimensions of the input layers must match the
dimensions of the environment observations. specifications. For more information, see
rlQValueRepresentation.

For actor networks, the dimensions of the input layers must match the dimensions of the environment
observation specifications.

• Networks used in actors with a discrete action space (such as the ones in PG, AC, and PPO agents)
must have a single output layer with an output size equal to the number of possible discrete
actions.

4 Define Policies and Value Functions

4-4

• Networks used in deterministic actors with a continuous action space (such as the ones in DDPG
and TD3 agents) must have a single output layer with an output size matching the dimension of
the action space defined in the environment action specification.

• Networks used in stochastic actors with a continuous action space (such as the ones in PG, AC,
PPO, and SAC agents) must have a single output layer with output size having twice the dimension
of the action space defined in the environment action specification. These networks must have two
separate paths, the first producing the mean values (which must be scaled to the output range)
and the second producing the standard deviations (which must be non-negative).

For more information, see rlDeterministicActorRepresentation and
rlStochasticActorRepresentation.

Build Deep Neural Network

Deep neural networks consist of a series of interconnected layers. The following table lists some
common deep learning layers used in reinforcement learning applications. For a full list of available
layers, see “List of Deep Learning Layers”.

Layer Description
featureInputLayer Inputs feature data and applies normalization
imageInputLayer Inputs vectors and 2-D images and applies normalization.
sigmoidLayer Applies a sigmoid function to the input such that the output

is bounded in the interval (0,1).
tanhLayer Applies a hyperbolic tangent activation layer to the input.
reluLayer Sets any input values that are less than zero to zero.
fullyConnectedLayer Multiplies the input vector by a weight matrix, and add a

bias vector.
convolution2dLayer Applies sliding convolutional filters to the input.
additionLayer Adds the outputs of multiple layers together.
concatenationLayer Concatenates inputs along a specified dimension.
sequenceInputLayer Provides inputs sequence data to a network.
lstmLayer Applies a Long Short-Term Memory layer to the input.

Supported for DQN and PPO agents.

The bilstmLayer and batchNormalizationLayer layers are not supported for reinforcement
learning.

The Reinforcement Learning Toolbox software provides the following layers, which contain no
tunable parameters (that is, parameters that change during training).

Layer Description
scalingLayer Applies a linearly scale and bias to an input array. This layer

is useful for scaling and shifting the outputs of nonlinear
layers, such as tanhLayer and sigmoid layer.

 Create Policy and Value Function Representations

4-5

Layer Description
quadraticLayer Creates a vector of quadratic monomials constructed from

the elements of the input array. This layer is useful when
you need an output that is some quadratic function of its
inputs, such as for an LQR controller.

softplusLayer Implements the softplus activation Y = log(1 + eX), which
ensures that the output is always positive. This is a
smoothed version of the rectified linear unit (ReLU).

You can also create your own custom layers. For more information, see “Define Custom Deep
Learning Layers”.

For reinforcement learning applications, you construct your deep neural network by connecting a
series of layers for each input path (observations or actions) and for each output path (estimated
rewards or actions). You then connect these paths together using the connectLayers function.

You can also create your deep neural network using the Deep Network Designer app. For an
example, see “Create Agent Using Deep Network Designer and Train Using Image Observations” on
page 5-73.

When you create a deep neural network, you must specify names for the first layer of each input path
and the final layer of the output path.

The following code creates and connects the following input and output paths:

• An observation input path, observationPath, with the first layer named 'observation'.
• An action input path, actionPath, with the first layer named 'action'.
• An estimated value function output path, commonPath, which takes the outputs of

observationPath and actionPath as inputs. The final layer of this path is named 'output'.

observationPath = [
 imageInputLayer([4 1 1],'Normalization','none','Name','observation')
 fullyConnectedLayer(24,'Name','CriticObsFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(24,'Name','CriticObsFC2')];
actionPath = [
 imageInputLayer([1 1 1],'Normalization','none','Name','action')
 fullyConnectedLayer(24,'Name','CriticActFC1')];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticObsFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActFC1','add/in2');

For all observation and action input paths, you must specify an imageInputLayer as the first layer
in the path.

You can view the structure of your deep neural network using the plot function.

plot(criticNetwork)

4 Define Policies and Value Functions

4-6

For PG and AC agents, the final output layers of your deep neural network actor representation are a
fullyConnectedLayer and a softmaxLayer. When you specify the layers for your network, you
must specify the fullyConnectedLayer and you can optionally specify the softmaxLayer. If you
omit the softmaxLayer, the software automatically adds one for you.

Determining the number, type, and size of layers for your deep neural network representation can be
difficult and is application dependent. However, the most critical component in deciding the
characteristics of the function approximator is whether it is able to approximate the optimal policy or
discounted value function for your application, that is, whether it has layers that can correctly learn
the features of your observation, action, and reward signals.

Consider the following tips when constructing your network.

• For continuous action spaces, bound actions with a tanhLayer followed by a ScalingLayer, if
necessary.

• Deep dense networks with reluLayer layers can be fairly good at approximating many different
functions. Therefore, they are often a good first choice.

• Start with the smallest possible network that you think can approximate the optimal policy or
value function.

• When you approximate strong nonlinearities or systems with algebraic constraints, adding more
layers is often better than increasing the number of outputs per layer. In general, the ability of the
approximator to represent more complex functions grows only polynomially in the size of the
layers, but grows exponentially with the number of layers. In other words, more layers allow
approximating more complex and nonlinear compositional functions, although this generally
requires more data and longer training times. Networks with fewer layers can require
exponentially more units to successfully approximate the same class of functions, and might fail to
learn and generalize correctly.

 Create Policy and Value Function Representations

4-7

• For on-policy agents (the ones that learn only from experience collected while following the
current policy), such as AC and PG agents, parallel training works better if your networks are
large (for example, a network with two hidden layers with 32 nodes each, which has a few
hundred parameters). On-policy parallel updates assume each worker updates a different part of
the network, such as when they explore different areas of the observation space. If the network is
small, the worker updates can correlate with each other and make training unstable.

Create and Configure Representation

To create a critic representation for your deep neural network, use an rlValueRepresentation or
rlQValueRepresentation object. To create an actor representation for your deep neural network,
use an rlDeterministicActorRepresentation or rlStochasticActorRepresentation
object. To configure the learning rate and optimization used by the representation, use an
rlRepresentationOptions object.

For example, create a Q-value representation object for the critic network criticNetwork,
specifying a learning rate of 0.0001. When you create the representation, pass the environment
action and observation specifications to the rlQValueRepresentation object, and specify the
names of the network layers to which the observations and actions are connected (in this case
'observation' and 'action').
opt = rlRepresentationOptions('LearnRate',0.0001);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'observation'},'Action',{'action'},opt);

When you create your deep neural network and configure your representation object, consider using
the following approach as a starting point.

1 Start with the smallest possible network and a high learning rate (0.01). Train this initial
network to see if the agent converges quickly to a poor policy or acts in a random manner. If
either of these issues occur, rescale the network by adding more layers or more outputs on each
layer. Your goal is to find a network structure that is just big enough, does not learn too fast, and
shows signs of learning (an improving trajectory of the reward graph) after an initial training
period.

2 Once you settle on a good network architecture, a low initial learning rate can allow you to see if
the agent is on the right track, and help you check that your network architecture is satisfactory
for the problem. A low learning rate makes tuning parameters is much easier, especially for
difficult problems.

Also, consider the following tips when configuring your deep neural network representation.

• Be patient with DDPG and DQN agents, since they might not learn anything for some time during
the early episodes, and they typically show a dip in cumulative reward early in the training
process. Eventually, they can show signs of learning after the first few thousand episodes.

• For DDPG and DQN agents, promoting exploration of the agent is critical.
• For agents with both actor and critic networks, set the initial learning rates of both

representations to the same value. For some problems, setting the critic learning rate to a higher
value than that of the actor can improve learning results.

Recurrent Neural Networks

When creating representations for use with a PPO or DQN agent, you can use recurrent neural
networks. These networks are deep neural networks with a sequenceInputLayer input layer and at
least one layer that has hidden state information, such as an lstmLayer. They can be especially

4 Define Policies and Value Functions

4-8

useful when the environment has states that cannot be included in the observation vector. For more
information and examples, see rlValueRepresentation, rlQValueRepresentation,
rlDeterministicActorRepresentation, and rlStochasticActorRepresentation.

Custom Basis Function Approximators
Custom (linear in the parameters) basis function approximators have the form f = W'B, where W is a
weight array and B is the column vector output of a custom basis function that you must create. The
learnable parameters of a linear basis function representation are the elements of W.

For value function critic representations, (such as the ones used in AC, PG or PPO agents), f is a
scalar value, so W must be a column vector with the same length as B, and B must be a function of the
observation. For more information, see rlValueRepresentation.

For single-output Q-value function critic representations, (such as the ones used in Q, DQN, SARSA,
DDPG, TD3, and SAC agents), f is a scalar value, so W must be a column vector with the same length
as B, and B must be a function of both the observation and action. For more information, see
rlQValueRepresentation.

For multi-output Q-value function critic representations with discrete action spaces, (such as those
used in Q, DQN, and SARSA agents), f is a vector with as many elements as the number of possible
actions. Therefore W must be a matrix with as many columns as the number of possible actions and as
many rows as the length of B. B must be only a function of the observation. For more information, see
rlQValueRepresentation.

• For actors with a discrete action space (such as the ones in PG, AC, and PPO agents), f must be
column vector with length equal to the number of possible discrete actions.

• For deterministic actors with a continuous action space (such as the ones in DDPG, and TD3
agents), the dimensions of f must match the dimensions of the agent action specification, which is
either a scalar or a column vector.

• Stochastic actors with continuous action spaces cannot rely on custom basis functions (they can
only use neural network approximators, due to the need to enforce positivity for the standard
deviations).

For any actor representation, W must have as many columns as the number of elements in f, and as
many rows as the number of elements in B. B must be only a function of the observation. For more
information, see rlDeterministicActorRepresentation, and
rlStochasticActorRepresentation.

For an example that trains a custom agent that uses a linear basis function representation, see “Train
Custom LQR Agent” on page 5-227.

Create an Agent or Specify Agent Representations
Once you create your actor and critic representations, you can create a reinforcement learning agent
that uses these representations. For example, create a PG agent using a given actor and critic
network.

agentOpts = rlPGAgentOptions('UseBaseline',true);
agent = rlPGAgent(actor,baseline,agentOpts);

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents” on page 3-2.

 Create Policy and Value Function Representations

4-9

You can obtain the actor and critic representations from an existing agent using getActor and
getCritic, respectively.

You can also set the actor and critic of an existing agent using setActor and setCritic,
respectively. When you specify a representation for an existing agent using these functions, the input
and output layers of the specified representation must match the observation and action
specifications of the original agent.

See Also

More About
• “Reinforcement Learning Agents” on page 3-2
• “Import Policy and Value Function Representations” on page 4-11

4 Define Policies and Value Functions

4-10

Import Policy and Value Function Representations
To create function approximators for reinforcement learning, you can import pretrained deep neural
networks or deep neural network layer architectures using the Deep Learning Toolbox network
import functionality. You can import:

• Open Neural Network Exchange (ONNX) models, which require the Deep Learning Toolbox
Converter for ONNX Model Format support package software. For more information,
importONNXLayers.

• TensorFlow-Keras networks, which require Deep Learning Toolbox Importer for TensorFlow-Keras
Models support package software. For more information, see importKerasLayers.

• Caffe convolutional networks, which require Deep Learning Toolbox Importer for Caffe Models
support package software. For more information, see importCaffeLayers.

After you import a deep neural network, you can create a policy or value function representation
object using a representation object, such as rlValueRepresentation.

When you import deep neural network architectures, consider the following.

• Imported architectures must have a single input layer and a single output layer. Therefore,
importing entire critic networks with observation and action input layers is not supported.

• The dimensions of the imported network architecture input and output layers must match the
dimensions of the corresponding action, observation, or reward dimensions for your environment.

• After importing the network architecture, you must set the names of the input and output layers to
match the names of the corresponding action and observation specifications.

For more information on the deep neural network architectures supported for reinforcement
learning, see “Create Policy and Value Function Representations” on page 4-2.

Import Actor and Critic for Image Observation Application
As an example, assume that you have an environment with a 50-by-50 grayscale image observation
signal and a continuous action space. To train a policy gradient agent, you require the following
function approximators, both of which must have a single 50-by-50 image input observation layer and
a single scalar output value.

• Actor — Selects an action value based on the current observation
• Critic — Estimates the expected long-term reward based on the current observation

Also, assume that you have the following network architectures to import:

• A deep neural network architecture for the actor with a 50-by-50 image input layer and a scalar
output layer, which is saved in the ONNX format (criticNetwork.onnx).

• A deep neural network architecture for the critic with a 50-by-50 image input layer and a scalar
output layer, which is saved in the ONNX format (actorNetwork.onnx).

To import the critic and actor networks, use the importONNXLayers function without specifying an
output layer.
criticNetwork = importONNXLayers('criticNetwork.onnx');
actorNetwork = importONNXLayers('actorNetwork.onnx');

 Import Policy and Value Function Representations

4-11

These commands generate a warning, which states that the network is trainable until an output layer
is added. When you use an imported network to create an actor or critic representation,
Reinforcement Learning Toolbox software automatically adds an output layer for you.

After you import the networks, create the actor and critic function approximator representations. To
do so, first obtain the observation and action specifications from the environment.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create the critic representation, specifying the name of the input layer of the critic network as the
observation name. Since the critic network has a single observation input and a single action output,
use a value-function representation.
critic = rlValueRepresentation(criticNetwork,obsInfo,...
 'Observation',{criticNetwork.Layers(1).Name});

Create the actor representation, specifying the name of the input layer of the actor network as the
observation name and the output layer of the actor network as the observation name. Since the actor
network has a single scalar output, use a deterministic actor representation.
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{actorNetwork.Layers(1).Name},...
 'Action',{actorNetwork.Layers(end).Name});

You can then:

• Create an agent using these representations. For more information, see “Reinforcement Learning
Agents” on page 3-2.

• Set the actor and critic representation in an existing agent using setActor and setCritic,
respectively.

See Also

More About
• “Create Policy and Value Function Representations” on page 4-2
• “Reinforcement Learning Agents” on page 3-2

4 Define Policies and Value Functions

4-12

Train and Validate Agents

• “Train Reinforcement Learning Agents” on page 5-2
• “Train DQN Agent to Balance Cart-Pole System” on page 5-8
• “Train PG Agent to Balance Cart-Pole System” on page 5-14
• “Train AC Agent to Balance Cart-Pole System” on page 5-19
• “Train PG Agent with Baseline to Control Double Integrator System” on page 5-25
• “Train DDPG Agent to Control Double Integrator System” on page 5-31
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-37
• “Train DDPG Agent to Swing Up and Balance Pendulum” on page 5-44
• “Train DDPG Agent to Swing Up and Balance Cart-Pole System” on page 5-51
• “Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal” on page 5-58
• “Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation” on page 5-65
• “Create Agent Using Deep Network Designer and Train Using Image Observations” on page 5-73
• “Train AC Agent to Balance Cart-Pole System Using Parallel Computing” on page 5-85
• “Train DDPG Agent to Control Flying Robot” on page 5-90
• “Train PPO Agent to Land Rocket” on page 5-96
• “Train Multiple Agents to Perform Collaborative Task” on page 5-102
• “Train Multiple Agents for Area Coverage” on page 5-110
• “Train Multiple Agents for Path Following Control” on page 5-117
• “Train DDPG Agent for Adaptive Cruise Control” on page 5-126
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Train PPO Agent for Automatic Parking Valet” on page 5-142
• “Train DDPG Agent for Path-Following Control” on page 5-152
• “Train DQN Agent for Lane Keeping Assist Using Parallel Computing” on page 5-160
• “Train Biped Robot to Walk Using Reinforcement Learning Agents” on page 5-168
• “Quadruped Robot Locomotion Using DDPG Agent” on page 5-179
• “Train DDPG Agent for PMSM Control” on page 5-187
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-193
• “Train DDPG Agent with Pretrained Actor Network” on page 5-201
• “Imitate Nonlinear MPC Controller for Flying Robot” on page 5-209
• “Tune PI Controller using Reinforcement Learning” on page 5-217
• “Train Custom LQR Agent” on page 5-227
• “Train Reinforcement Learning Policy Using Custom Training Loop” on page 5-231
• “Create Agent for Custom Reinforcement Learning Algorithm” on page 5-240

5

Train Reinforcement Learning Agents
Once you have created an environment and reinforcement learning agent, you can train the agent in
the environment using the train function. To configure your training, use the rlTrainingOptions
function. For example, create a training option set opt, and train agent agent in environment env.

opt = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',1000,...
 'StopTrainingCriteria',"AverageReward",...
 'StopTrainingValue',480);
trainStats = train(agent,env,opt);

For more information on creating agents, see “Reinforcement Learning Agents” on page 3-2. For
more information on creating environments, see “Create MATLAB Environments for Reinforcement
Learning” on page 2-2 and “Create Simulink Environments for Reinforcement Learning” on page 2-5.

train updates the agent as training progresses. To preserve the original agent parameters for later
use, save the agent to a MAT-file.

save("initialAgent.mat","agent")

Training terminates automatically when the conditions you specify in the StopTrainingCriteria
and StopTrainingValue options of your rlTrainingOptions object are satisfied. To manually
terminate training in progress, type Ctrl+C or, in the Reinforcement Learning Episode Manager, click
Stop Training. Because train updates the agent at each episode, you can resume training by
calling train(agent,env,trainOpts) again, without losing the trained parameters learned
during the first call to train.

Training Algorithm
In general, training performs the following steps.

1 Initialize the agent.
2 For each episode:

a Reset the environment.
b Get the initial observation s0 from the environment.
c Compute the initial action a0 = μ(s0), where μ(s) is the current policy.
d Set the current action to the initial action (a←a0), and set the current observation to the

initial observation (s←s0).
e While the episode is not finished or terminated, perform the following steps.

i Apply action a to the environment and obtain the next observation s''and the reward r.
ii Learn from the experience set (s,a,r,s').
iii Compute the next action a' = μ(s').
iv Update the current action with the next action (a←a') and update the current

observation with the next observation (s←s').
v Terminate the episode if the termination conditions defined in the environment are met.

3 If the training termination condition is met, terminate training. Otherwise, begin the next
episode.

5 Train and Validate Agents

5-2

The specifics of how the software performs these steps depend on the configuration of the agent and
environment. For instance, resetting the environment at the start of each episode can include
randomizing initial state values, if you configure your environment to do so. For more information on
agents and their training algorithms, see “Reinforcement Learning Agents” on page 3-2.

Episode Manager
By default, calling the train function opens the Reinforcement Learning Episode Manager, which
lets you visualize the training progress. The Episode Manager plot shows the reward for each episode
(EpisodeReward) and a running average reward value (AverageReward). Also, for agents that have
critics, the plot shows the critic's estimate of the discounted long-term reward at the start of each
episode (EpisodeQ0). The Episode Manager also displays various episode and training statistics. You
can also use the train function to return episode and training information.

For agents with a critic, Episode Q0 is the estimate of the discounted long-term reward at the start
of each episode, given the initial observation of the environment. As training progresses, if the critic
is well designed. Episode Q0 approaches the true discounted long-term reward, as shown in the
preceding figure.

To turn off the Reinforcement Learning Episode Manager, set the Plots option of
rlTrainingOptions to "none".

 Train Reinforcement Learning Agents

5-3

Save Candidate Agents
During training, you can save candidate agents that meet conditions you specify in the
SaveAgentCriteria and SaveAgentValue options of your rlTrainingOptions object. For
instance, you can save any agent whose episode reward exceeds a certain value, even if the overall
condition for terminating training is not yet satisfied. For example, save agents when the episode
reward is greater than 100.
opt = rlTrainingOptions('SaveAgentCriteria',"EpisodeReward",'SaveAgentValue',100');

train stores saved agents in a MAT-file in the folder you specify using the SaveAgentDirectory
option of rlTrainingOptions. Saved agents can be useful, for instance, to test candidate agents
generated during a long-running training process. For details about saving criteria and saving
location, see rlTrainingOptions.

After training is complete, you can save the final trained agent from the MATLAB workspace using
the save function. For example, save the agent myAgent to the file finalAgent.mat in the current
working directory.
save(opt.SaveAgentDirectory + "/finalAgent.mat",'agent')

By default, when DDPG and DQN agents are saved, the experience buffer data is not saved. If you
plan to further train your saved agent, you can start training with the previous experience buffer as a
starting point. In this case, set the SaveExperienceBufferWithAgent option to true. For some
agents, such as those with large experience buffers and image-based observations, the memory
required for saving the experience buffer is large. In these cases, you must ensure that enough
memory is available for the saved agents.

Parallel Computing
You can accelerate agent training by running parallel training simulations. If you have Parallel
Computing Toolbox software, you can run parallel simulations on multicore computers. If you have
MATLAB Parallel Server software, you can run parallel simulations on computer clusters or cloud
resources.

When you train agents using parallel computing, the host client sends copies of the agent and
environment to each parallel worker. Each worker simulates the agent within the environment and
sends their simulation data back to the host. The host agent learns from the data sent by the workers
and sends the updated policy parameters back to the workers.

5 Train and Validate Agents

5-4

To create a parallel pool of N workers, use the following syntax.

pool = parpool(N);

If you do not create a parallel pool using parpool, the train function automatically creates one
using your default parallel pool preferences. For more information on specifying these preferences,
see “Specify Your Parallel Preferences” (Parallel Computing Toolbox).

For off-policy agents, such as DDPG and DQN agents, do not use all of your cores for parallel training.
For example, if your CPU has six cores, train with four workers. Doing so provides more resources for
the host client to compute gradients based on the experiences sent back from the workers. Limiting
the number of workers is not necessary for on-policy agents, such as PG and AC agents, when the
gradients are computed on the workers.

For more information on configuring your training to use parallel computing, see the UseParallel
and ParallelizationOptions options in rlTrainingOptions.

To benefit from parallel computing, the computational cost for simulating the environment must be
relatively expensive compared to the optimization of parameters when sending experiences back to
the host. If the simulation of the environment is not expensive enough, the workers idle while waiting
for the host to learn and send back updated parameters.

When sending experiences back from the workers, you can improve sample efficiency when the ratio
(R) of the environment step complexity to the learning complexity is large. If the environment is fast
to simulate (R is small), you are unlikely to get any benefit from experience-based parallelization. If
the environment is expensive to simulate but it is also expensive to learn (for example, if the mini-
batch size is large), then you are also unlikely to improve sample efficiency. However, in this case, for
off-policy agents, you can reduce the mini-batch size to make R larger, which improves sample
efficiency.

 Train Reinforcement Learning Agents

5-5

For an example that trains an agent using parallel computing in MATLAB, see “Train AC Agent to
Balance Cart-Pole System Using Parallel Computing” on page 5-85. For an example that trains an
agent using parallel computing in Simulink, see “Train DQN Agent for Lane Keeping Assist Using
Parallel Computing” on page 5-160.

GPU Acceleration
When using deep neural network function approximators for your actor or critic representations, you
can speed up training by performing representation operations on a GPU rather than a CPU. To do so,
set the UseDevice option to "gpu".

opt = rlRepresentationOptions('UseDevice',"gpu");

The size of any performance improvement depends on your specific application and network
configuration.

Validate Trained Policy
To validate your trained agent, you can simulate the agent within the training environment using the
sim function. To configure the simulation, use rlSimulationOptions.

When validating your agent, consider checking how your agent handles the following:

• Changes to simulation initial conditions — To change the model initial conditions, modify the reset
function for the environment. For example reset functions, see “Create MATLAB Environment
Using Custom Functions” on page 2-33, “Create Custom MATLAB Environment from Template” on
page 2-40, and “Create Simulink Environments for Reinforcement Learning” on page 2-5.

• Mismatches between the training and simulation environment dynamics — To check such
mismatches, create test environments in the same way that you created the training environment,
modifying the environment behavior.

As with parallel training, if you have Parallel Computing Toolbox software, you can run multiple
parallel simulations on multicore computers. If you have MATLAB Parallel Server software, you can
run multiple parallel simulations on computer clusters or cloud resources. For more information on
configuring your simulation to use parallel computing, see UseParallel and
ParallelizationOptions in rlSimulationOptions.

Environment Visualization
If your training environment implements the plot method, you can visualize the environment
behavior during training and simulation. If you call plot(env) before training or simulation, where
env is your environment object, then the visualization updates during training to allow you to
visualize the progress of each episode or simulation.

Environment visualization is not supported when training or simulating your agent using parallel
computing.

For custom environments, you must implement your own plot method. For more information on
creating a custom environments with a plot function, see “Create Custom MATLAB Environment
from Template” on page 2-40.

5 Train and Validate Agents

5-6

See Also
train

More About
• “Reinforcement Learning Agents” on page 3-2

 Train Reinforcement Learning Agents

5-7

Train DQN Agent to Balance Cart-Pole System
This example shows how to train a deep Q-learning network (DQN) agent to balance a cart-pole
system modeled in MATLAB®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-10. For an example
that trains a DQN agent in Simulink®, see “Train DQN Agent to Swing Up and Balance Pendulum” on
page 5-37.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pole stand upright
without falling over.

For this environment:

• The upward balanced pole position is 0 radians, and the downward hanging position is pi radians.
• The pole starts upright with an initial angle between –0.05 and 0.05 radians.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pole angle,

and the pole angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pole falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

Create Environment Interface

Create a predefined environment interface for the system.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

5 Train and Validate Agents

5-8

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Get the observation and action specification information.

obsInfo = getObservationInfo(env)

obsInfo =
 rlNumericSpec with properties:

 LowerLimit: -Inf
 UpperLimit: Inf
 Name: "CartPole States"
 Description: "x, dx, theta, dtheta"
 Dimension: [4 1]
 DataType: "double"

actInfo = getActionInfo(env)

actInfo =
 rlFiniteSetSpec with properties:

 Elements: [-10 10]
 Name: "CartPole Action"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

A DQN agent approximates the long-term reward, given observations and actions, using a value-
function critic.

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.

 Train DQN Agent to Balance Cart-Pole System

5-9

To create the critic, first create a deep neural network with one input (the 4-dimensional observed
state) and one output vector with two elements (one for the 10 N action, another for the –10 N
action). For more information on creating value-function representations based on a neural network,
see “Create Policy and Value Function Representations” on page 4-2.

dnn = [
 featureInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(24, 'Name','CriticStateFC2')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(length(actInfo.Elements),'Name','output')];

View the network configuration.

figure
plot(layerGraph(dnn))

Specify some training options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',0.001,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. For more
information, see rlQValueRepresentation.

critic = rlQValueRepresentation(dnn,obsInfo,actInfo,'Observation',{'state'},criticOpts);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

5 Train and Validate Agents

5-10

agentOpts = rlDQNAgentOptions(...
 'UseDoubleDQN',false, ...
 'TargetSmoothFactor',1, ...
 'TargetUpdateFrequency',4, ...
 'ExperienceBufferLength',100000, ...
 'DiscountFactor',0.99, ...
 'MiniBatchSize',256);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run one training session containing at most 1000 episodes, with each episode lasting at most 500
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an moving average cumulative reward greater than 480. At
this point, the agent can balance the cart-pole system in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000, ...
 'MaxStepsPerEpisode',500, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',480);

You can visualize the cart-pole system can be visualized by using the plot function during training or
simulation.

plot(env)

 Train DQN Agent to Balance Cart-Pole System

5-11

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('MATLABCartpoleDQNMulti.mat','agent')
end

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim. The agent can balance
the cart-pole even when the simulation time increases to 500 steps.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-12

totalReward = sum(experience.Reward)

totalReward = 500

See Also
train

More About
• “Deep Q-Network Agents” on page 3-10
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train DQN Agent to Balance Cart-Pole System

5-13

Train PG Agent to Balance Cart-Pole System
This example shows how to train a policy gradient (PG) agent to balance a cart-pole system modeled
in MATLAB®. For more information on PG agents, see “Policy Gradient Agents” on page 3-13.

For an example that trains a PG agent with a baseline, see “Train PG Agent with Baseline to Control
Double Integrator System” on page 5-25.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pendulum stand
upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.05 radians.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

env =
 CartPoleDiscreteAction with properties:

5 Train and Validate Agents

5-14

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create PG Agent

A PG agent decides which action to take given observations using an actor representation. To create
the actor, first create a deep neural network with one input (the observation) and one output (the
action). The actor network has two outputs, which corresponds to the number of possible actions. For
more information on creating a deep neural network policy representation, see “Create Policy and
Value Function Representations” on page 4-2.

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedLayer(2,'Name','fc')
 softmaxLayer('Name','actionProb')
];

Specify options for the actor representation using rlRepresentationOptions.

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtained from the
environment interface. For more information, see rlStochasticActorRepresentation.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},actorOpts);

Create the agent using the specified actor representation and the default agent options. For more
information, see rlPGAgent.

agent = rlPGAgent(actor);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

 Train PG Agent to Balance Cart-Pole System

5-15

• Run each training episode for at most 1000 episodes, with each episode lasting at most 200 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 195 over 100
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 1000, ...
 'MaxStepsPerEpisode', 200, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',195,...
 'ScoreAveragingWindowLength',100);

You can visualize the cart-pole system by using the plot function during training or simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('MATLABCartpolePG.mat','agent');
end

5 Train and Validate Agents

5-16

Simulate PG Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim. The agent can balance
the cart-pole system even when the simulation time increases to 500 steps.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)

 Train PG Agent to Balance Cart-Pole System

5-17

totalReward = 500

See Also
train

More About
• “Policy Gradient Agents” on page 3-13
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

5 Train and Validate Agents

5-18

Train AC Agent to Balance Cart-Pole System
This example shows how to train an actor-critic (AC) agent to balance a cart-pole system modeled in
MATLAB®.

For more information on AC agents, see “Actor-Critic Agents” on page 3-25. For an example showing
how to train an AC agent using parallel computing, see “Train AC Agent to Balance Cart-Pole System
Using Parallel Computing” on page 5-85.

Cart-Pole MATLAB Environment

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pendulum stand
upright without falling over.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The pendulum starts upright with an initial angle between –0.05 and 0.5 rad.
• The force action signal from the agent to the environment is from –10 to 10 N.
• The observations from the environment are the position and velocity of the cart, the pendulum

angle, and the pendulum angle derivative.
• The episode terminates if the pole is more than 12 degrees from vertical or if the cart moves more

than 2.4 m from the original position.
• A reward of +1 is provided for every time step that the pole remains upright. A penalty of –5 is

applied when the pendulum falls.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("CartPole-Discrete")

 Train AC Agent to Balance Cart-Pole System

5-19

env =
 CartPoleDiscreteAction with properties:

 Gravity: 9.8000
 MassCart: 1
 MassPole: 0.1000
 Length: 0.5000
 MaxForce: 10
 Ts: 0.0200
 ThetaThresholdRadians: 0.2094
 XThreshold: 2.4000
 RewardForNotFalling: 1
 PenaltyForFalling: -5
 State: [4x1 double]

env.PenaltyForFalling = -10;

The interface has a discrete action space where the agent can apply one of two possible force values
to the cart, –10 or 10 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create AC Agent

An AC agent approximates the long-term reward, given observations and actions, using a critic value
function representation. To create the critic, first create a deep neural network with one input (the
observation) and one output (the state value). The input size of the critic network is 4 since the
environment has four observations. For more information on creating a deep neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

criticNetwork = [
 featureInputLayer(4,'Normalization','none','Name','state')
 fullyConnectedLayer(1,'Name','CriticFC')];

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtain from the environment
interface. For more information, see rlValueRepresentation.

critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

An AC agent decides which action to take, given observations, using an actor representation. To
create the actor, create a deep neural network with one input (the observation) and one output (the
action). The output size of the actor network is 2 since the environment has two possible actions, –10
and 10.

5 Train and Validate Agents

5-20

Construct the actor in a similar manner to the critic. For more information, see
rlStochasticActorRepresentation.

actorNetwork = [
 featureInputLayer(4,'Normalization','none','Name','state')
 fullyConnectedLayer(2,'Name','fc')
 softmaxLayer('Name','actionProb')];

actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'state'},actorOpts);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
 'NumStepsToLookAhead',32, ...
 'DiscountFactor',0.99);

Then create the agent using the specified actor representation and the default agent options. For
more information, see rlACAgent.

agent = rlACAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training episode for at most 1000 episodes, with each episode lasting at most 500 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 480 over 10
consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',480,...
 'ScoreAveragingWindowLength',10);

You can visualize the cart-pole system during training or simulation using the plot function.

plot(env)

 Train AC Agent to Balance Cart-Pole System

5-21

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('MATLABCartpoleAC.mat','agent');
end

5 Train and Validate Agents

5-22

Simulate AC Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)

 Train AC Agent to Balance Cart-Pole System

5-23

totalReward = 500

See Also
train

More About
• “Actor-Critic Agents” on page 3-25
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

5 Train and Validate Agents

5-24

Train PG Agent with Baseline to Control Double Integrator
System

This example shows how to train a policy gradient (PG) agent with baseline to control a second-order
dynamic system modeled in MATLAB®.

For more information on the basic PG agent with no baseline, see the example “Train PG Agent to
Balance Cart-Pole System” on page 5-14.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order double integrator system
with a gain. The training goal is to control the position of a mass in the second-order system by
applying a force input.

For this environment:

• The mass starts at an initial position between –2 and 2 units.
• The force action signal from the agent to the environment is from –2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or if

x < 0 . 01.
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

Here:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance; Q = 10 0; 0 1 .
• R is the weight on the control effort; R = 0 . 01.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

 Train PG Agent with Baseline to Control Double Integrator System

5-25

Create Double Integrator MATLAB Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv("DoubleIntegrator-Discrete")

env =
 DoubleIntegratorDiscreteAction with properties:

 Gain: 1
 Ts: 0.1000
 MaxDistance: 5
 GoalThreshold: 0.0100
 Q: [2x2 double]
 R: 0.0100
 MaxForce: 2
 State: [2x1 double]

The interface has a discrete action space where the agent can apply one of three possible force
values to the mass: -2, 0, or 2 N.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo.Elements);

Fix the random generator seed for reproducibility.

rng(0)

Create PG Agent Actor

A PG agent decides which action to take, given observations, using an actor representation. To create
the actor, first create a deep neural network with one input (the observation) and one output (the
action). For more information on creating a deep neural network value function representation, see
“Create Policy and Value Function Representations” on page 4-2.

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0)];

Specify options for the actor representation using rlRepresentationOptions.

actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtained from the
environment interface. For more information, see rlStochasticActorRepresentation.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},actorOpts);

Create PG Agent Baseline

A baseline that varies with state can reduce the variance of the expected value of the update and thus
improve the speed of learning for a PG agent. A possible choice for the baseline is an estimate of the
state value function [1].

5 Train and Validate Agents

5-26

In this case, the baseline representation is a deep neural network with one input (the state) and one
output (the state value).

Construct the baseline in a similar manner to the actor.

baselineNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedLayer(8,'Name','BaselineFC')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(1,'Name','BaselineFC2','BiasLearnRateFactor',0)];

baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

baseline = rlValueRepresentation(baselineNetwork,obsInfo,'Observation',{'state'},baselineOpts);

To create the PG agent with baseline, specify the PG agent options using rlPGAgentOptions and set
the UseBaseline option set to true.

agentOpts = rlPGAgentOptions(...
 'UseBaseline',true, ...
 'DiscountFactor',0.99);

Then create the agent using the specified actor representation, baseline representation, and agent
options. For more information, see rlPGAgent.

agent = rlPGAgent(actor,baseline,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run at most 1000 episodes, with each episode lasting at most 200 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option).
• Stop training when the agent receives a moving average cumulative reward greater than –45. At

this point, the agent can control the position of the mass using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000, ...
 'MaxStepsPerEpisode',200, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-43);

You can visualize the double integrator system using the plot function during training or simulation.

plot(env)

 Train PG Agent with Baseline to Control Double Integrator System

5-27

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained parameters for the example.
 load('DoubleIntegPGBaseline.mat');
end

5 Train and Validate Agents

5-28

Simulate PG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

totalReward = sum(experience.Reward)

totalReward = -43.0392

 Train PG Agent with Baseline to Control Double Integrator System

5-29

References

[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
edition. Adaptive Computation and Machine Learning Series. Cambridge, MA: The MIT Press, 2018.

See Also
rlPGAgent

More About
• “Policy Gradient Agents” on page 3-13
• “Train PG Agent to Balance Cart-Pole System” on page 5-14
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

5 Train and Validate Agents

5-30

Train DDPG Agent to Control Double Integrator System
This example shows how to train a deep deterministic policy gradient (DDPG) agent to control a
second-order dynamic system modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17. For an example showing how to train a DDPG agent in Simulink®, see “Train DDPG Agent to
Swing Up and Balance Pendulum” on page 5-44.

Double Integrator MATLAB Environment

The reinforcement learning environment for this example is a second-order double-integrator system
with a gain. The training goal is to control the position of a mass in the second-order system by
applying a force input.

For this environment:

• The mass starts at an initial position between –4 and 4 units.
• The force action signal from the agent to the environment is from –2 to 2 N.
• The observations from the environment are the position and velocity of the mass.
• The episode terminates if the mass moves more than 5 m from the original position or if

x < 0 . 01.
• The reward rt, provided at every time step, is a discretization of r t :

r t = − x t ′ Q x t + u t ′ R u t

Here:

• x is the state vector of the mass.
• u is the force applied to the mass.
• Q is the weights on the control performance; Q = 10 0; 0 1 .
• R is the weight on the control effort; R = 0 . 01.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

 Train DDPG Agent to Control Double Integrator System

5-31

Create Environment Interface

Create a predefined environment interface for the double integrator system.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env =
 DoubleIntegratorContinuousAction with properties:

 Gain: 1
 Ts: 0.1000
 MaxDistance: 5
 GoalThreshold: 0.0100
 Q: [2x2 double]
 R: 0.0100
 MaxForce: Inf
 State: [2x1 double]

env.MaxForce = Inf;

The interface has a continuous action space where the agent can apply force values from -Inf to Inf
to the mass.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numActions = numel(actInfo);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. For more information on creating a neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

statePath = imageInputLayer([numObservations 1 1],'Normalization','none','Name','state');
actionPath = imageInputLayer([numActions 1 1],'Normalization','none','Name','action');
commonPath = [concatenationLayer(1,2,'Name','concat')
 quadraticLayer('Name','quadratic')
 fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor',0,'Bias',0)];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'state','concat/in1');
criticNetwork = connectLayers(criticNetwork,'action','concat/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-32

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},criticOpts);

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor in a similar manner to the critic.

actorNetwork = [
 imageInputLayer([numObservations 1 1],'Normalization','none','Name','state')
 fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0,'Bias',0)];

actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},actorOpts);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',env.Ts,...

 Train DDPG Agent to Control Double Integrator System

5-33

 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',32);
agentOpts.NoiseOptions.Variance = 0.3;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-6;

Create the DDPG agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run at most 1000 episodes in the training session, with each episode lasting at most 200 time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Stop training when the agent receives a moving average cumulative reward greater than –66. At
this point, the agent can control the position of the mass using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes', 5000, ...
 'MaxStepsPerEpisode', 200, ...
 'Verbose', false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-66);

You can visualize the double integrator environment by using the plot function during training or
simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

5 Train and Validate Agents

5-34

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('DoubleIntegDDPG.mat','agent');
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the double integrator
environment. For more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Control Double Integrator System

5-35

totalReward = sum(experience.Reward)

totalReward = single
 -65.9933

See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 3-17
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

5 Train and Validate Agents

5-36

Train DQN Agent to Swing Up and Balance Pendulum
This example shows how to train a deep Q-learning network (DQN) agent to swing up and balance a
pendulum modeled in Simulink®.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-10. For an example
that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-Pole System” on page
5-8.

Pendulum Swing-up Model

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.

 Train DQN Agent to Swing Up and Balance Pendulum

5-37

• The observations from the environment are the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

• The reward rt, provided at every timestep, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-22.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Discrete')

env =
SimulinkEnvWithAgent with properties:

 Model : rlSimplePendulumModel
 AgentBlock : rlSimplePendulumModel/RL Agent
 ResetFcn : []
 UseFastRestart : on

The interface has a discrete action space where the agent can apply one of three possible torque
values to the pendulum: –2, 0, or 2 N·m.

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Get the observation and action specification information from the environment

obsInfo = getObservationInfo(env)

obsInfo =
 rlNumericSpec with properties:

 LowerLimit: -Inf
 UpperLimit: Inf
 Name: "observations"
 Description: [0x0 string]
 Dimension: [3 1]
 DataType: "double"

actInfo = getActionInfo(env)

5 Train and Validate Agents

5-38

actInfo =
 rlFiniteSetSpec with properties:

 Elements: [3x1 double]
 Name: "torque"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

A DQN agent approximates the long-term reward, given observations and actions, using a value
function critic.

Since DQN has a discrete action space, it can rely on a multi-output critic approximator, which is
generally a more efficient option than relying on a comparable single-output approximator. A multi-
output approximator has only the observation as input and an output vector having as many elements
as the number of possible discrete actions. Each output element represents the expected cumulative
long-term reward following from the observation given as input, when the corresponding discrete
action is taken.

To create the critic, first create a deep neural network with an input vector of three elements (for the
sine, cosine, and derivative of the pendulum angle) and one output vector with three elements (–2, 0,
or 2 Nm actions). For more information on creating a deep neural network value function
representation, see “Create Policy and Value Function Representations” on page 4-2.

dnn = [
 featureInputLayer(3,'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(48,'Name','CriticStateFC2')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(3,'Name','output')];

View the critic network configuration.

figure
plot(layerGraph(dnn))

 Train DQN Agent to Swing Up and Balance Pendulum

5-39

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',0.001,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify observation and action info for the critic. For more information, see
rlQValueRepresentation.

critic = rlQValueRepresentation(dnn,obsInfo,actInfo,'Observation',{'state'},criticOpts);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOptions = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',3000,...
 'UseDoubleDQN',false,...
 'DiscountFactor',0.9,...
 'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

5 Train and Validate Agents

5-40

• Run each training for at most 1000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option to false).
• Stop training when the agent receives an average cumulative reward greater than –1100 over five

consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –1100.

For more information, see rlTrainingOptions.

trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',500,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-1100,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-1100);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load the pretrained agent for the example.
 load('SimulinkPendulumDQNMulti.mat','agent');
end

 Train DQN Agent to Swing Up and Balance Pendulum

5-41

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-42

See Also
rlDQNAgent

More About
• “Deep Q-Network Agents” on page 3-10
• “Create Simulink Environments for Reinforcement Learning” on page 2-5

 Train DQN Agent to Swing Up and Balance Pendulum

5-43

Train DDPG Agent to Swing Up and Balance Pendulum
This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a pendulum modeled in Simulink®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17. For an example that trains a DDPG agent in MATLAB®, see “Train DDPG Agent to Control Double
Integrator System” on page 5-31.

Pendulum Swing-Up Model

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.

5 Train and Validate Agents

5-44

• The observations from the environment are the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.

• θṫ is the derivative of the displacement angle.

• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-22.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env =
SimulinkEnvWithAgent with properties:

 Model : rlSimplePendulumModel
 AgentBlock : rlSimplePendulumModel/RL Agent
 ResetFcn : []
 UseFastRestart : on

The interface has a continuous action space where the agent can apply torque values between –2 to 2
N·m to the pendulum.

Set the observations of the environment to be the sine of the pendulum angle, the cosine of the
pendulum angle, and the pendulum angle derivative.

numObs = 3;
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

 Train DDPG Agent to Swing Up and Balance Pendulum

5-45

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. For more information on creating a deep neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

statePath = [
 featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(400,'Name','CriticStateFC1')
 reluLayer('Name', 'CriticRelu1')
 fullyConnectedLayer(300,'Name','CriticStateFC2')];
actionPath = [
 featureInputLayer(1,'Normalization','none','Name','action')
 fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor',0)];
commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-46

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlQValueRepresentation.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'action'},criticOpts);

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor in a manner similar to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(400,'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(300,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh')

 Train DDPG Agent to Swing Up and Balance Pendulum

5-47

 scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];

actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'observation'},'Action',{'ActorScaling'},actorOpts);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run training for at most 50000 episodes, with each episode lasting at most ceil(Tf/Ts) time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –740 over five
consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-740);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining

5 Train and Validate Agents

5-48

 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('SimulinkPendulumDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Swing Up and Balance Pendulum

5-49

See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Deep Deterministic Policy Gradient Agents” on page 3-17

5 Train and Validate Agents

5-50

Train DDPG Agent to Swing Up and Balance Cart-Pole System
This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a cart-pole system modeled in Simscape™ Multibody™.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17. For an example showing how to train a DDPG agent in MATLAB®, see “Train DDPG Agent to
Control Double Integrator System” on page 5-31.

Cart-Pole Simscape Model

The reinforcement learning environment for this example is a pole attached to an unactuated joint on
a cart, which moves along a frictionless track. The training goal is to make the pole stand upright
without falling over using minimal control effort.

Open the model.

mdl = 'rlCartPoleSimscapeModel';
open_system(mdl)

The cart-pole system is modeled using Simscape Multibody.

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-51

For this model:

• The upward balanced pole position is 0 radians, and the downward hanging position is pi radians.
• The force action signal from the agent to the environment is from –15 to 15 N.
• The observations from the environment are the position and velocity of the cart, and the sine,

cosine, and derivative of the pole angle.
• The episode terminates if the cart moves more than 3.5 m from the original position.
• The reward rt, provided at every timestep, is

rt = − 0 . 1 5θt
2 + xt2 + 0 . 05ut − 1

2 − 100B

Here:

• θt is the angle of displacement from the upright position of the pole.
• xt is the position displacement from the center position of the cart.
• ut − 1 is the control effort from the previous time step.
• B is a flag (1 or 0) that indicates whether the cart is out of bounds.

For more information on this model, see “Load Predefined Simulink Environments” on page 2-22.

Create Environment Interface

Create a predefined environment interface for the pole.

env = rlPredefinedEnv('CartPoleSimscapeModel-Continuous')

env =
SimulinkEnvWithAgent with properties:

 Model : rlCartPoleSimscapeModel

5 Train and Validate Agents

5-52

 AgentBlock : rlCartPoleSimscapeModel/RL Agent
 ResetFcn : []
 UseFastRestart : on

The interface has a continuous action space where the agent can apply possible torque values from –
15 to 15 N to the pole.

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Specify the simulation time Tf and the agent sample time Ts in seconds

Ts = 0.02;
Tf = 25;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the state and action) and one output. The input size of action path is [1 1 1] since the agent can
apply an action as one force value to the environment. For more information on creating a deep
neural network value function representation, see “Create Policy and Value Function
Representations” on page 4-2.

statePath = [
 featureInputLayer(numObservations,'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(200,'Name','CriticStateFC2')];

actionPath = [
 featureInputLayer(1,'Normalization','none','Name','action')
 fullyConnectedLayer(200,'Name','CriticActionFC1','BiasLearnRateFactor',0)];

commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-53

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you already obtained from the
environment interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor in a similar manner to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(200,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh1')
 scalingLayer('Name','ActorScaling','Scale',max(actInfo.UpperLimit))];

5 Train and Validate Agents

5-54

actorOptions = rlRepresentationOptions('LearnRate',5e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.4;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the agent using the specified actor representation, critic representation and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training episode for at most 2000 episodes, with each episode lasting at most
ceil(Tf/Ts) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –400 over five
consecutive episodes. At this point, the agent can quickly balance the pole in the upright position
using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –400.

For more information, see rlTrainingOptions.

maxepisodes = 2000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-400,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-400);

Train the agent using the train function. Training this agent process is computationally intensive
and takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-55

 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load the pretrained agent for the example.
 load('SimscapeCartPoleDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-56

bdclose(mdl)

See Also
rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Deep Deterministic Policy Gradient Agents” on page 3-17

 Train DDPG Agent to Swing Up and Balance Cart-Pole System

5-57

Train DDPG Agent to Swing Up and Balance Pendulum with Bus
Signal

This example shows how to convert a simple frictionless pendulum Simulink® model to a
reinforcement learning environment interface, and trains a deep deterministic policy gradient
(DDPG) agent in this environment.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17. For an example showing how to train a DDPG agent in MATLAB®, see “Train DDPG Agent to
Control Double Integrator System” on page 5-31.

Pendulum Swing-Up Model with Bus

The starting model for this example is a simple frictionless pendulum. The training goal is to make
the pendulum stand upright without falling over using minimal control effort.

Open the model.

mdl = 'rlSimplePendulumModelBus';
open_system(mdl)

For this model:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

5 Train and Validate Agents

5-58

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are the sine of the pendulum angle, the cosine of the

pendulum angle, and the pendulum angle derivative.
• Both the observation and action signals are Simulink buses.
• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

The model used in this example is similar to the simple pendulum model described in “Load
Predefined Simulink Environments” on page 2-22. The difference is that the model in this example
uses Simulink buses for the action and observation signals.

Create Environment Interface with Bus

The environment interface from a Simulink model is created using rlSimulinkEnv, which requires
the name of the Simulink model, the path to the agent block, and observation and action
reinforcement learning data specifications. For models that use bus signals for actions or
observations, you can create the corresponding specifications using the bus2RLSpec function.

Specify the path to the agent block.

agentBlk = 'rlSimplePendulumModelBus/RL Agent';

Create the observation Bus object.

obsBus = Simulink.Bus();
obs(1) = Simulink.BusElement;
obs(1).Name = 'sin_theta';
obs(2) = Simulink.BusElement;
obs(2).Name = 'cos_theta';
obs(3) = Simulink.BusElement;
obs(3).Name = 'dtheta';
obsBus.Elements = obs;

Create the action Bus object.

actBus = Simulink.Bus();
act(1) = Simulink.BusElement;
act(1).Name = 'tau';
act(1).Min = -2;
act(1).Max = 2;
actBus.Elements = act;

Create the action and observation specification objects using the Simulink buses.

obsInfo = bus2RLSpec('obsBus','Model',mdl);
actInfo = bus2RLSpec('actBus','Model',mdl);

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-59

Create the reinforcement learning environment for the pendulum model.

env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo);

To define the initial condition of the pendulum as hanging downward, specify an environment reset
function using an anonymous function handle. This reset function sets the model workspace variable
theta0 to pi.

env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);

Specify the simulation time Tf and the agent sample time Ts in seconds.

Ts = 0.05;
Tf = 20;

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent decides which action to take, given observations, using an actor representation. To
create the actor, first create a deep neural network with three inputs (the observations) and one
output (the action). The three observations can be combined using a concatenationLayer.

For more information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 4-2.

sinThetaInput = featureInputLayer(1,'Normalization','none','Name','sin_theta');
cosThetaInput = featureInputLayer(1,'Normalization','none','Name','cos_theta');
dThetaInput = featureInputLayer(1,'Normalization','none','Name','dtheta');
commonPath = [
 concatenationLayer(1,3,'Name','concat')
 fullyConnectedLayer(400, 'Name','ActorFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(300,'Name','ActorFC2')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(1,'Name','ActorFC3')
 tanhLayer('Name','ActorTanh1')
 scalingLayer('Name','ActorScaling1','Scale',max(actInfo.UpperLimit))];

actorNetwork = layerGraph(sinThetaInput);
actorNetwork = addLayers(actorNetwork,cosThetaInput);
actorNetwork = addLayers(actorNetwork,dThetaInput);
actorNetwork = addLayers(actorNetwork,commonPath);

actorNetwork = connectLayers(actorNetwork,'sin_theta','concat/in1');
actorNetwork = connectLayers(actorNetwork,'cos_theta','concat/in2');
actorNetwork = connectLayers(actorNetwork,'dtheta','concat/in3');

View the actor network configuration.

figure
plot(actorNetwork)

5 Train and Validate Agents

5-60

Specify options for the critic representation using rlRepresentationOptions.

actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);

Create the actor representation using the specified deep neural network and options. You must also
specify the action and observation info for the actor, which you obtained from the environment
interface. For more information, see rlDeterministicActorRepresentation.

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'sin_theta','cos_theta','dtheta'},'Action',{'ActorScaling1'},actorOptions);

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
observation and action, and one output, the state action value.

Construct the critic in a similar manner to the actor. For more information, see
rlQValueRepresentation.

statePath = [
 concatenationLayer(1,3,'Name','concat')
 fullyConnectedLayer(400,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(300,'Name','CriticStateFC2')];

actionPath = [
 featureInputLayer(1,'Normalization','none','Name', 'action')
 fullyConnectedLayer(300,'Name','CriticActionFC1','BiasLearnRateFactor', 0)];

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-61

commonPath = [
 additionLayer(2,'Name','add')
 reluLayer('Name','CriticCommonRelu')
 fullyConnectedLayer(1,'Name','CriticOutput')];

criticNetwork = layerGraph(sinThetaInput);
criticNetwork = addLayers(criticNetwork,cosThetaInput);
criticNetwork = addLayers(criticNetwork,dThetaInput);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'sin_theta','concat/in1');
criticNetwork = connectLayers(criticNetwork,'cos_theta','concat/in2');
criticNetwork = connectLayers(criticNetwork,'dtheta','concat/in3');
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'sin_theta','cos_theta','dtheta'},'Action',{'action'},criticOpts);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOpts = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOpts.NoiseOptions.Variance = 0.6;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-5;

Then create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOpts);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 50000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than –740 over five
consecutive episodes. At this point, the agent can quickly balance the pendulum in the upright
position using minimal control effort.

• Save a copy of the agent for each episode where the cumulative reward is greater than –740.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);

5 Train and Validate Agents

5-62

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'ScoreAveragingWindowLength',5,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('SimulinkPendBusDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

 Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal

5-63

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

See Also
bus2RLSpec | rlDDPGAgent | rlSimulinkEnv | train

More About
• “Create Simulink Environments for Reinforcement Learning” on page 2-5
• “Deep Deterministic Policy Gradient Agents” on page 3-17

5 Train and Validate Agents

5-64

Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation

This example shows how to train a deep deterministic policy gradient (DDPG) agent to swing up and
balance a pendulum with an image observation modeled in MATLAB®.

For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17.

Simple Pendulum with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are an image indicating the location of the pendulum mass

and the pendulum angular velocity.
• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Load Predefined Control System Environments” on page 2-
15.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumWithImage-Continuous')

env =
 SimplePendlumWithImageContinuousAction with properties:

 Mass: 1
 RodLength: 1
 RodInertia: 0
 Gravity: 9.8100
 DampingRatio: 0
 MaximumTorque: 2
 Ts: 0.0500
 State: [2x1 double]

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-65

 Q: [2x2 double]
 R: 1.0000e-03

The interface has a continuous action space where the agent can apply a torque between –2 to 2 N·m.

Obtain the observation and action specification from the environment interface.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward, given observations and actions, using a critic
value function representation. To create the critic, first create a deep convolutional neural network
(CNN) with three inputs (the image, angular velocity, and action) and one output. For more
information on creating representations, see “Create Policy and Value Function Representations” on
page 4-2.

hiddenLayerSize1 = 400;
hiddenLayerSize2 = 300;

imgPath = [
 imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
 convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
 reluLayer('Name','relu1')
 fullyConnectedLayer(2,'Name','fc1')
 concatenationLayer(3,2,'Name','cat1')
 fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')
];
dthetaPath = [
 imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
 fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
];
actPath =[
 imageInputLayer(actInfo(1).Dimension,'Normalization','none','Name','action')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc6','BiasLearnRateFactor',0,'Bias',zeros(hiddenLayerSize2,1))
];

criticNetwork = layerGraph(imgPath);
criticNetwork = addLayers(criticNetwork,dthetaPath);
criticNetwork = addLayers(criticNetwork,actPath);
criticNetwork = connectLayers(criticNetwork,'fc5','cat1/in2');
criticNetwork = connectLayers(criticNetwork,'fc6','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

5 Train and Validate Agents

5-66

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the critic CNN. Using a GPU
requires Parallel Computing Toolbox™ software and a CUDA® enabled NVIDIA® GPU with compute
capability 3.0 or higher.

% criticOptions.UseDevice = 'gpu';

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation',{'pendImage','angularRate'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep convolutional neural network (CNN) with two inputs (the image
and angular velocity) and one output (the action).

Construct the actor in a similar manner to the critic.

imgPath = [
 imageInputLayer(obsInfo(1).Dimension,'Normalization','none','Name',obsInfo(1).Name)
 convolution2dLayer(10,2,'Name','conv1','Stride',5,'Padding',0)
 reluLayer('Name','relu1')

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-67

 fullyConnectedLayer(2,'Name','fc1')
 concatenationLayer(3,2,'Name','cat1')
 fullyConnectedLayer(hiddenLayerSize1,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize2,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')
 tanhLayer('Name','tanh1')
 scalingLayer('Name','scale1','Scale',max(actInfo.UpperLimit))
];
dthetaPath = [
 imageInputLayer(obsInfo(2).Dimension,'Normalization','none','Name',obsInfo(2).Name)
 fullyConnectedLayer(1,'Name','fc5','BiasLearnRateFactor',0,'Bias',0)
];

actorNetwork = layerGraph(imgPath);
actorNetwork = addLayers(actorNetwork,dthetaPath);
actorNetwork = connectLayers(actorNetwork,'fc5','cat1/in2');

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

Uncomment the following line to use the GPU to accelerate training of the actor CNN.

% actorOptions.UseDevice = 'gpu';

Create the actor representation using the specified neural network and options. For more
information, see rlDeterministicActorRepresentation.

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'pendImage','angularRate'},'Action',{'scale1'},actorOptions);

View the actor network configuration.

figure
plot(actorNetwork)

5 Train and Validate Agents

5-68

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',env.Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',128);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then create the agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 400 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option).
• Stop training when the agent receives a moving average cumulative reward greater than -740

over ten consecutive episodes. At this point, the agent can quickly balance the pendulum in the
upright position using minimal control effort.

For more information, see rlTrainingOptions.

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-69

maxepisodes = 5000;
maxsteps = 400;
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-740);

You can visualize the pendulum by using the plot function during training or simulation.

plot(env)

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several hours to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load pretrained agent for the example.
 load('SimplePendulumWithImageDDPG.mat','agent')
end

5 Train and Validate Agents

5-70

Simulate DDPG Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation

5-71

See Also
train

More About
• “Deep Deterministic Policy Gradient Agents” on page 3-17
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

5 Train and Validate Agents

5-72

Create Agent Using Deep Network Designer and Train Using
Image Observations

This example shows how to create a deep Q-learning network (DQN) agent that can swing up and
balance a pendulum modeled in MATLAB®. In this example, you create the DQN agent using Deep
Network Designer. For more information on DQN agents, see “Deep Q-Network Agents” on page 3-
10.

Pendulum Swing-Up with Image MATLAB Environment

The reinforcement learning environment for this example is a simple frictionless pendulum that
initially hangs in a downward position. The training goal is to make the pendulum stand upright
without falling over using minimal control effort.

For this environment:

• The upward balanced pendulum position is 0 radians, and the downward hanging position is pi
radians.

• The torque action signal from the agent to the environment is from –2 to 2 N·m.
• The observations from the environment are the simplified grayscale image of the pendulum and

the pendulum angle derivative.

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-73

• The reward rt, provided at every time step, is

rt = − θt
2 + 0 . 1θṫ

2 + 0 . 001ut − 1
2

Here:

• θt is the angle of displacement from the upright position.
• θṫ is the derivative of the displacement angle.
• ut − 1 is the control effort from the previous time step.

For more information on this model, see “Train DDPG Agent to Swing Up and Balance Pendulum with
Image Observation” on page 5-65.

Create Environment Interface

Create a predefined environment interface for the pendulum.

env = rlPredefinedEnv('SimplePendulumWithImage-Discrete');

The interface has two observations. The first observation, named "pendImage", is a 50-by-50
grayscale image.

obsInfo = getObservationInfo(env);
obsInfo(1)

ans =
 rlNumericSpec with properties:

 LowerLimit: 0
 UpperLimit: 1
 Name: "pendImage"
 Description: [0x0 string]
 Dimension: [50 50]
 DataType: "double"

The second observation, named "angularRate", is the angular velocity of the pendulum.

obsInfo(2)

ans =
 rlNumericSpec with properties:

 LowerLimit: -Inf
 UpperLimit: Inf
 Name: "angularRate"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

The interface has a discrete action space where the agent can apply one of five possible torque values
to the pendulum: -2, -1, 0, 1, or 2 N·m.

actInfo = getActionInfo(env)

5 Train and Validate Agents

5-74

actInfo =
 rlFiniteSetSpec with properties:

 Elements: [-2 -1 0 1 2]
 Name: "torque"
 Description: [0x0 string]
 Dimension: [1 1]
 DataType: "double"

Fix the random generator seed for reproducibility.

rng(0)

Construct Critic Network Using Deep Network Designer

A DQN agent approximates the long-term reward, given observations and actions, using a critic value
function representation. For this environment, the critic is a deep neural network with three inputs
(two observations and one action), and one output. For more information on creating a deep neural
network value function representation, see “Create Policy and Value Function Representations” on
page 4-2.

You can construct the critic network interactively by using the Deep Network Designer app. To do so,
you first create separate input paths for each observation and action. These paths learn lower level
features from their respective inputs. You then create a common output path that combines the
outputs from the input paths.

Create Image Observation Path

To create the image observation path, first drag an ImageInputLayer from the Layer Library pane
to the canvas. Set the layer InputSize to 50,50,1 for the image observation, and set Normalization
to none.

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-75

Second, drag a Convolution2DLayer to the canvas and connect the input of this layer to the output
of the ImageInputLayer. Create a convolution layer with 2 filters (NumFilters property) that have
a height and width of 10 (FilterSize property), and use a stride of 5 in the horizontal and vertical
directions (Stride property).

5 Train and Validate Agents

5-76

Finally, complete the image path network with two sets of ReLULayer and FullyConnectedLayer
layers. The output sizes of the first and second FullyConnectedLayer layers are 400 and 300,
respectively.

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-77

Create All Input Paths and Output Path

Construct the other input paths and output path in a similar manner. For this example, use the
following options.

Angular velocity path (scalar input):

• ImageInputLayer — Set InputSize to 1,1 and Normalization to none.
• FullyConnectedLayer — Set OutputSize to 400.
• ReLULayer
• FullyConnectedLayer — Set OutputSize to 300.

Action path (scalar input):

• ImageInputLayer — Set InputSize to 1,1 and Normalization to none.
• FullyConnectedLayer — Set OutputSize to 300.

Output path:

• AdditionLayer — Connect the output of all input paths to the input of this layer.
• ReLULayer
• FullyConnectedLayer — Set OutputSize to 1 for the scalar value function.

5 Train and Validate Agents

5-78

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-79

Export Network from Deep Network Designer

To export the network to the MATLAB workspace, in Deep Network Designer, click Export. Deep
Network Designer exports the network as a new variable containing the network layers. You can
create the critic representation using this layer network variable.

Alternatively, to generate equivalent MATLAB code for the network, click Export > Generate Code.

The generated code is as follows.

lgraph = layerGraph();
layers = [
 imageInputLayer([1 1 1],"Name","torque","Normalization","none")
 fullyConnectedLayer(300,"Name","torque_fc1")];
lgraph = addLayers(lgraph,layers);
layers = [
 imageInputLayer([1 1 1],"Name","angularRate","Normalization","none")
 fullyConnectedLayer(400,"Name","dtheta_fc1")
 reluLayer("Name","dtheta_relu1")
 fullyConnectedLayer(300,"Name","dtheta_fc2")];
lgraph = addLayers(lgraph,layers);
layers = [
 imageInputLayer([50 50 1],"Name","pendImage","Normalization","none")
 convolution2dLayer([10 10],2,"Name","img_conv1","Stride",[5 5])
 reluLayer("Name","img_relu")
 fullyConnectedLayer(400,"Name","theta_fc1")
 reluLayer("Name","theta_relu1")
 fullyConnectedLayer(300,"Name","theta_fc2")];
lgraph = addLayers(lgraph,layers);
layers = [
 additionLayer(3,"Name","addition")
 reluLayer("Name","relu")
 fullyConnectedLayer(1,"Name","stateValue")];
lgraph = addLayers(lgraph,layers);
lgraph = connectLayers(lgraph,"torque_fc1","addition/in3");
lgraph = connectLayers(lgraph,"theta_fc2","addition/in1");
lgraph = connectLayers(lgraph,"dtheta_fc2","addition/in2");

View the critic network configuration.

figure
plot(lgraph)

5 Train and Validate Agents

5-80

Specify options for the critic representation using rlRepresentationOptions.

criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified deep neural network lgraph and options. You
must also specify the action and observation info for the critic, which you obtain from the
environment interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(lgraph,obsInfo,actInfo,...
 'Observation',{'pendImage','angularRate'},'Action',{'torque'},criticOpts);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
 'UseDoubleDQN',false,...
 'TargetUpdateMethod',"smoothing",...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'SampleTime',env.Ts,...
 'MiniBatchSize',64);
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-5;

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-81

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 5000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option to false).
• Stop training when the agent receives an average cumulative reward greater than –1000 over the

default window length of five consecutive episodes. At this point, the agent can quickly balance
the pendulum in the upright position using minimal control effort.

For more information, see rlTrainingOptions.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',5000,...
 'MaxStepsPerEpisode',500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-1000);

You can visualize the pendulum system during training or simulation by using the plot function.

plot(env)

5 Train and Validate Agents

5-82

Train the agent using the train function. This is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('MATLABPendImageDQN.mat','agent');
end

Simulate DQN Agent

To validate the performance of the trained agent, simulate it within the pendulum environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

 Create Agent Using Deep Network Designer and Train Using Image Observations

5-83

totalReward = sum(experience.Reward)

totalReward = -888.9802

See Also
Deep Network Designer | rlDQNAgent

More About
• “Train DQN Agent to Swing Up and Balance Pendulum” on page 5-37

5 Train and Validate Agents

5-84

Train AC Agent to Balance Cart-Pole System Using Parallel
Computing

This example shows how to train an actor-critic (AC) agent to balance a cart-pole system modeled in
MATLAB® by using asynchronous parallel training. For an example that shows how to train the agent
without using parallel training, see “Train AC Agent to Balance Cart-Pole System” on page 5-19.

Actor Parallel Training

When you use parallel computing with AC agents, each worker generates experiences from its copy of
the agent and the environment. After every N steps, the worker computes gradients from the
experiences and sends the computed gradients back to the host agent. The host agent updates its
parameters as follows.

• For asynchronous training, the host agent applies the received gradients without waiting for all
workers to send gradients, and sends the updated parameters back to the worker that provided
the gradients. Then, the worker continues to generate experiences from its environment using the
updated parameters.

• For synchronous training, the host agent waits to receive gradients from all of the workers and
updates its parameters using these gradients. The host then sends updated parameters to all the
workers at the same time. Then, all workers continue to generate experiences using the updated
parameters.

Create Cart-Pole MATLAB Environment Interface

Create a predefined environment interface for the cart-pole system. For more information on this
environment, see “Load Predefined Control System Environments” on page 2-15.

env = rlPredefinedEnv("CartPole-Discrete");
env.PenaltyForFalling = -10;

Obtain the observation and action information from the environment interface.

obsInfo = getObservationInfo(env);
numObservations = obsInfo.Dimension(1);
actInfo = getActionInfo(env);

Fix the random generator seed for reproducibility.

rng(0)

Create AC Agent

An AC agent approximates the long-term reward, given observations and actions, using a critic value
function representation. To create the critic, first create a deep neural network with one input (the
observation) and one output (the state value). The input size of the critic network is 4 since the
environment provides 4 observations. For more information on creating a deep neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

criticNetwork = [
 featureInputLayer(4,'Normalization','none','Name','state')
 fullyConnectedLayer(32,'Name','CriticStateFC1')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(1, 'Name', 'CriticFC')];

 Train AC Agent to Balance Cart-Pole System Using Parallel Computing

5-85

criticOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

An AC agent decides which action to take, given observations, using an actor representation. To
create the actor, create a deep neural network with one input (the observation) and one output (the
action). The output size of the actor network is 2 since the agent can apply 2 force values to the
environment, –10 and 10.

actorNetwork = [
 featureInputLayer(4,'Normalization','none','Name','state')
 fullyConnectedLayer(32, 'Name','ActorStateFC1')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(2,'Name','action')];

actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'state'},actorOpts);

To create the AC agent, first specify the AC agent options using rlACAgentOptions.

agentOpts = rlACAgentOptions(...
 'NumStepsToLookAhead',32,...
 'EntropyLossWeight',0.01,...
 'DiscountFactor',0.99);

Then create the agent using the specified actor representation and agent options. For more
information, see rlACAgent.

agent = rlACAgent(actor,critic,agentOpts);

Parallel Training Options

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 1000 episodes, with each episode lasting at most 500 time steps.
• Display the training progress in the Episode Manager dialog box (set the Plots option) and

disable the command line display (set the Verbose option).
• Stop training when the agent receives an average cumulative reward greater than 500 over 10

consecutive episodes. At this point, the agent can balance the pendulum in the upright position.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode', 500,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',500,...
 'ScoreAveragingWindowLength',10);

You can visualize the cart-pole system can during training or simulation using the plot function.

plot(env)

5 Train and Validate Agents

5-86

To train the agent using parallel computing, specify the following training options.

• Set the UseParallel option to True.
• Train the agent in parallel asynchronously by setting the ParallelizationOptions.Mode

option to "async".
• After every 32 steps, each worker computes gradients from experiences and send them to the

host.
• The AC agent requires workers to send "gradients" to the host.
• The AC agent requires 'StepsUntilDataIsSent' to be equal to

agentOptions.NumStepsToLookAhead.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "gradients";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. Training the agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness in the asynchronous parallel training, you can expect different training results from the
following training plot. The plot shows the result of training with six workers.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load the pretrained agent for the example.
 load('MATLABCartpoleParAC.mat','agent');
end

 Train AC Agent to Balance Cart-Pole System Using Parallel Computing

5-87

Simulate AC Agent

You can visualize the cart-pole system with the plot function during simulation.

plot(env)

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-88

totalReward = sum(experience.Reward)

totalReward = 500

References

[1] Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. ‘Asynchronous Methods for Deep Reinforcement
Learning’. ArXiv:1602.01783 [Cs], 16 June 2016. https://arxiv.org/abs/1602.01783.

See Also
rlTrainingOptions | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 Train AC Agent to Balance Cart-Pole System Using Parallel Computing

5-89

https://arxiv.org/abs/1602.01783

Train DDPG Agent to Control Flying Robot
This example shows how to train a deep deterministic policy gradient (DDPG) agent to generate
trajectories for a flying robot modeled in Simulink®. For more information on DDPG agents, see
“Deep Deterministic Policy Gradient Agents” on page 3-17.

Flying Robot Model

The reinforcement learning environment for this example is a flying robot with its initial condition
randomized around a ring of radius 15 m. The orientation of the robot is also randomized. The robot
has two thrusters mounted on the side of the body that are used to propel and steer the robot. The
training goal is to drive the robot from its initial condition to the origin facing east.

Open the model.

mdl = 'rlFlyingRobotEnv';
open_system(mdl)

Set the initial model state variables.

theta0 = 0;
x0 = -15;
y0 = 0;

Define the sample time Ts and the simulation duration Tf.

Ts = 0.4;
Tf = 30;

For this model:

• The goal orientation is 0 rad (robot facing east).
• The thrust from each actuator is bounded from -1 to 1 N
• The observations from the environment are the position, orientation (sine and cosine of

orientation), velocity, and angular velocity of the robot.
• The reward rt provided at every time step is

r1 = 10 xt
2 + yt

2 + θt 2 < 0 . 5

r2 = − 100 xt ≥ 20 yt ≥ 20

r3 = − 0 . 2 Rt − 1 + Lt − 1
2 + 0 . 3 Rt − 1− Lt − 1

2 + 0 . 03xt
2 + 0 . 03yt

2 + 0 . 02θt 2

rt = r1 + r2 + r3

where:

• xt is the position of the robot along the x-axis.
• yt is the position of the robot along the y-axis.
• θ t is the orientation of the robot.
• Lt − 1 is the control effort from the left thruster.

5 Train and Validate Agents

5-90

• Rt − 1 is the control effort from the right thruster.
• r1 is the reward when the robot is close to the goal.
• r2 is the penalty when the robot drives beyond 20 m in either the x or y direction. The simulation

is terminated when r2 < 0.
• r3 is a QR penalty that penalizes distance from the goal and control effort.

Create Integrated Model

To train an agent for the FlyingRobotEnv model, use the createIntegratedEnv function to
automatically generate an integrated model with the RL Agent block that is ready for training.

integratedMdl = 'IntegratedFlyingRobot';
[~,agentBlk,observationInfo,actionInfo] = createIntegratedEnv(mdl,integratedMdl);

Actions and Observations

Before creating the environment object, specify names for the observation and action specifications,
and bound the thrust actions between -1 and 1.

The observation signals for this environment are observation = x y ẋ ẏ sin θ cos θ θ̇ T.

numObs = prod(observationInfo.Dimension);
observationInfo.Name = 'observations';

The action signals for this environment are action = TR TL
T .

numAct = prod(actionInfo.Dimension);
actionInfo.LowerLimit = -ones(numAct,1);
actionInfo.UpperLimit = ones(numAct,1);
actionInfo.Name = 'thrusts';

Create Environment Interface

Create an environment interface for the flying robot using the integrated model.

env = rlSimulinkEnv(integratedMdl,agentBlk,observationInfo,actionInfo);

Reset Function

Create a custom reset function that randomizes the initial position of the robot along a ring of radius
15 m and the initial orientation. For details on the reset function, see flyingRobotResetFcn.

env.ResetFcn = @(in) flyingRobotResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. To create the critic, first create a deep neural network with two inputs
(the observation and action) and one output. For more information on creating a neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

 Train DDPG Agent to Control Flying Robot

5-91

% Specify the number of outputs for the hidden layers.
hiddenLayerSize = 100;

observationPath = [
 featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];
actionPath = [
 featureInputLayer(numAct,'Normalization','none','Name','action')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc5')];

% Create the layer graph.
criticNetwork = layerGraph(observationPath);
criticNetwork = addLayers(criticNetwork,actionPath);

% Connect actionPath to observationPath.
criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

Specify options for the critic using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation specification for the critic. For more information, see
rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

Construct the actor similarly to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(numAct,'Name','fc4')
 tanhLayer('Name','tanh1')];

actorOptions = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'tanh1'},actorOptions);

5 Train and Validate Agents

5-92

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6 ,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',256);
agentOptions.NoiseOptions.Variance = 1e-1;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;

Then, create the agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training for at most 20000 episodes, with each episode lasting at most ceil(Tf/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option to false).

• Stop training when the agent receives an average cumulative reward greater than 415 over 10
consecutive episodes. At this point, the agent can drive the flying robot to the goal position.

• Save a copy of the agent for each episode where the cumulative reward is greater than 415.

For more information, see rlTrainingOptions.

maxepisodes = 20000;
maxsteps = ceil(Tf/Ts);
trainingOptions = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'StopOnError',"on",...
 'Verbose',false,...
 'Plots',"training-progress",...
 'StopTrainingCriteria',"AverageReward",...
 'StopTrainingValue',415,...
 'ScoreAveragingWindowLength',10,...
 'SaveAgentCriteria',"EpisodeReward",...
 'SaveAgentValue',415);

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOptions);
else
 % Load the pretrained agent for the example.
 load('FlyingRobotDDPG.mat','agent')
end

 Train DDPG Agent to Control Flying Robot

5-93

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-94

See Also
rlDDPGAgent | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 Train DDPG Agent to Control Flying Robot

5-95

Train PPO Agent to Land Rocket
This example shows how to train a proximal policy optimization (PPO) agent with a discrete action
space to land a rocket on the ground. For more information on PPO agents, see “Proximal Policy
Optimization Agents” on page 3-28.

Environment

The environment in this example is a 3-DOF rocket represented by a circular disc with mass. The
rocket has two thrusters for forward and rotational motion. Gravity acts vertically downwards, and
there are no aerodynamic drag forces. The training goal is to make the robot land on the ground at a
specified location.

For this environment:

• Motion of the rocket is bounded in X (horizontal axis) from -100 to 100 meters and Y (vertical axis)
from 0 to 120 meters.

• The goal position is at (0,0) meters and the goal orientation is 0 radians.
• The maximum thrust applied by each thruster is 8.5 N.
• The sample time is 0.1 seconds.

5 Train and Validate Agents

5-96

• The observations from the environment are the rocket position x, y , orientation θ , velocity ẋ, ẏ ,
angular velocity θ̇ , and a sensor reading that detects rough landing (-1), soft landing (1) or
airborne (0) condition. The observations are normalized between -1 and 1.

• At the beginning of every episode, the rocket starts from a random initial x position and
orientation. The altitude is always reset to 100 meters.

• The reward rt provided at the time step t is as follows.

rt = st − st − 1 − 0 . 1θt
2− 0 . 01 Lt

2 + Rt
2 + 500c

st = 1 − dt +
vt
2

c = yt ≤ 0 && ẏt ≥ − 0 . 5 && ẋt ≤ 0 . 5

Here:

• xt,yt,ẋt, and ẏt are the positions and velocities of the rocket along the x and y axes.

• dt = xt
2 + yt

2/dmax is the normalized distance of the rocket from the goal position.

• vt = xṫ
2 + yṫ

2/vmax is the normalized speed of the rocket.

• dmax and vmax are the maximum distances and speeds.

• θt is the orientation with respect to the vertical axis.

• Lt and Rt are the action values for the left and right thrusters.

• c is a sparse reward for soft-landing with horizontal and vertical velocities less than 0.5 m/s.

Create MATLAB Environment

Create a MATLAB environment for the rocket lander using the RocketLander class.

env = RocketLander;

Obtain the observation and action specifications from the environment.

actionInfo = getActionInfo(env);
observationInfo = getObservationInfo(env);
numObs = observationInfo.Dimension(1);
numAct = numel(actionInfo.Elements);

Set a sample time for the environment

Ts = 0.1;

Fix the random generator seed for reproducibility.

rng(0)

Create PPO Agent

The PPO agent in this example operates on a discrete action space. At every time step, the agent
selects one of the following discrete action pairs.

 Train PPO Agent to Land Rocket

5-97

L, L− do nothing
L, M − fire right med
L, H − fire right high
M, L− fire left med
M, M − fire left med + right med
M, H − fire left med + right high
H, L− fire left high
H, M − fire left high + right med
H, H − fire left high + right high

Here, L = 0 . 0, M = 0 . 5 and H = 1 . 0 are normalized thrust values for each thruster.

To estimate the policy and value function, the agent maintains function approximators for the actor
and critic, which are modeled using deep neural networks. The training can be sensitive to the initial
network weights and biases, and results can vary with different sets of values. The network weights
are randomly initialized to small values in this example.

Create the critic deep neural network with six inputs and one output. The output of the critic network
is the discounted long-term reward for the input observations.

criticLayerSizes = [400 300];
actorLayerSizes = [400 300];

criticNetwork = [
 featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(criticLayerSizes(1),'Name','CriticFC1', ...
 'Weights',sqrt(2/numObs)*(rand(criticLayerSizes(1),numObs)-0.5), ...
 'Bias',1e-3*ones(criticLayerSizes(1),1))
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(criticLayerSizes(2),'Name','CriticFC2', ...
 'Weights',sqrt(2/criticLayerSizes(1))*(rand(criticLayerSizes(2),criticLayerSizes(1))-0.5), ...
 'Bias',1e-3*ones(criticLayerSizes(2),1))
 reluLayer('Name','CriticRelu2')
 fullyConnectedLayer(1,'Name','CriticOutput', ...
 'Weights',sqrt(2/criticLayerSizes(2))*(rand(1,criticLayerSizes(2))-0.5), ...
 'Bias',1e-3)];

Create the critic representation.

criticOpts = rlRepresentationOptions('LearnRate',1e-4);
critic = rlValueRepresentation(criticNetwork,observationInfo,'Observation',{'observation'},criticOpts);

Create the actor using a deep neural network with six inputs and two outputs. The outputs of the
actor network are the probabilities of taking each possible action pair. Each action pair contains
normalized action values for each thruster. The environment step function scales these values to
determine the actual thrust values.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','observation')
 fullyConnectedLayer(actorLayerSizes(1),'Name','ActorFC1', ...
 'Weights',sqrt(2/numObs)*(rand(actorLayerSizes(1),numObs)-0.5), ...
 'Bias',1e-3*ones(actorLayerSizes(1),1))
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(actorLayerSizes(2),'Name','ActorFC2', ...
 'Weights',sqrt(2/actorLayerSizes(1))*(rand(actorLayerSizes(2),actorLayerSizes(1))-0.5), ...

5 Train and Validate Agents

5-98

 'Bias',1e-3*ones(actorLayerSizes(2),1))
 reluLayer('Name', 'ActorRelu2')
 fullyConnectedLayer(numAct,'Name','Action', ...
 'Weights',sqrt(2/actorLayerSizes(2))*(rand(numAct,actorLayerSizes(2))-0.5), ...
 'Bias',1e-3*ones(numAct,1))
 softmaxLayer('Name','actionProb')];

Create the actor using a stochastic actor representation.

actorOpts = rlRepresentationOptions('LearnRate',1e-4);
actor = rlStochasticActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},actorOpts);

Specify the agent hyperparameters using an rlPPOAgentOptions object.

agentOpts = rlPPOAgentOptions(...
 'ExperienceHorizon',600,...
 'ClipFactor',0.02,...
 'EntropyLossWeight',0.01,...
 'MiniBatchSize',128,...
 'NumEpoch',3,...
 'AdvantageEstimateMethod','gae',...
 'GAEFactor',0.95,...
 'SampleTime',Ts,...
 'DiscountFactor',0.997);

For these hyperparameters:

• The agent collects experiences until it reaches the experience horizon of 600 steps or episode
termination and then trains from mini-batches of 128 experiences for 3 epochs.

• For improving training stability, use an objective function clip factor of 0.02.
• A discount factor value of 0.997 encourages long term rewards.
• Variance in critic output is reduced by using the Generalized Advantage Estimate method with a

GAE factor of 0.95.
• The EntropyLossWeight term of 0.01 enhances exploration during training.

Create the PPO agent.

agent = rlPPOAgent(actor,critic,agentOpts);

Train Agent

To train the PPO agent, specify the following training options.

• Run the training for at most 20000 episodes, with each episode lasting at most 600 time steps.
• Stop the training when the average reward over 100 consecutive episodes is 430 or more.
• Save a copy of the agent for each episode where the episode reward is 700 or more.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',20000,...
 'MaxStepsPerEpisode',600,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',430,...
 'ScoreAveragingWindowLength',100,...

 Train PPO Agent to Land Rocket

5-99

 'SaveAgentCriteria',"EpisodeReward",...
 'SaveAgentValue',700);

Train the agent using the train function. Due to the complexity of the environment, training process
is computationally intensive and takes several hours to complete. To save time while running this
example, load a pretrained agent by setting doTraining to false.

doTraining = false;
if doTraining
 trainingStats = train(agent,env,trainOpts);
else
 load('rocketLanderAgent.mat');
end

An example training session is shown below. The actual results may vary because of randomness in
the training process.

Simulate

Plot the rocket lander environment to visualize the simulation.

plot(env)

Simulate the trained agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

5 Train and Validate Agents

5-100

simOptions = rlSimulationOptions('MaxSteps',600);
simOptions.NumSimulations = 5; % simulate the environment 5 times
experience = sim(env,agent,simOptions);

See Also
rlPPOAgent | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 Train PPO Agent to Land Rocket

5-101

Train Multiple Agents to Perform Collaborative Task
This example shows how to set up a multi-agent training session on a Simulink® environment. In the
example, you train two agents to collaboratively perform the task of moving an object.

The environment in this example is a frictionless two dimensional surface containing elements
represented by circles. A target object C is represented by the blue circle with a radius of 2 m, and
robots A (red) and B (green) are represented by smaller circles with radii of 1 m each. The robots
attempt to move object C outside a circular ring of a radius 8 m by applying forces through collision.
All elements within the environment have mass and obey Newton's laws of motion. In addition,
contact forces between the elements and the environment boundaries are modeled as spring and
mass damper systems. The elements can move on the surface through the application of externally
applied forces in the X and Y directions. There is no motion in the third dimension and the total
energy of the system is conserved.

Create the set of parameters required for this example.

rlCollaborativeTaskParams

Open the Simulink model.

mdl = "rlCollaborativeTask";
open_system(mdl)

5 Train and Validate Agents

5-102

For this environment:

• The 2-dimensional space is bounded from –12 m to 12 m in both the X and Y directions.
• The contact spring stiffness and damping values are 100 N/m and 0.1 N/m/s, respectively.
• The agents share the same observations for positions, velocities of A, B, and C and the action

values from the last time step.
• The simulation terminates when object C moves outside the circular ring.
• At each time step, the agents receive the following reward:

 Train Multiple Agents to Perform Collaborative Task

5-103

rA = rglobal + rlocal, A
rB = rglobal + rlocal, B
rglobal = 0 . 001dc

rlocal, A = − 0 . 005dAC− 0 . 008uA
2

rlocal, B = − 0 . 005dBC− 0 . 008uB
2

Here:

• rAand rB are the rewards received by agents A and B, respectively.
• rglobal is a team reward that is received by both agents as object C moves closer towards the

boundary of the ring.
• rlocal, A and rlocal, B are local penalties received by agents A and B based on their distances from

object C and the magnitude of the action from the last time step.
• dC is the distance of object C from the center of the ring.
• dAC and dBC are the distances between agent A and object C and agent B and object C,

respectively.
• uA and uB are the action values of agents A and B from the last time step.

This example uses proximal policy optimization (PPO) agents with discrete action spaces. To learn
more about PPO agents, see “Proximal Policy Optimization Agents” on page 3-28. The agents apply
external forces on the robots that result in motion. At every time step, the agents select the actions
uA, B = FX , FY , where FX, FY is one of the following pairs of externally applied forces.

FX = − 1 . 0 N, FY = − 1 . 0 N

FX = − 1 . 0 N, FY = 0

FX = − 1 . 0 N, FY = 1 . 0 N

FX = 0, FY = − 1 . 0 N

FX = 0, FY = 0

FX = 0, FY = 1 . 0 N

FX = 1 . 0 N, FY = − 1 . 0 N

FX = 1 . 0 N, FY = 0

FX = 1 . 0 N, FY = 1 . 0 N

Create Environment

To create a multi-agent environment, specify the block paths of the agents using a string array. Also,
specify the observation and action specification objects using cell arrays. The order of the
specification objects in the cell array must match the order specified in the block path array. When
agents are available in the MATLAB workspace at the time of environment creation, the observation
and action specification arrays are optional. For more information on creating multi-agent
environments, see rlSimulinkEnv.

5 Train and Validate Agents

5-104

Create the I/O specifications for the environment. In this example, the agents are homogeneous and
have the same I/O specifications.

% Number of observations
numObs = 16;

% Number of actions
numAct = 2;

% Maximum value of externally applied force (N)
maxF = 1.0;

% I/O specifications for each agent
oinfo = rlNumericSpec([numObs,1]);
ainfo = rlFiniteSetSpec({
 [-maxF -maxF]
 [-maxF 0]
 [-maxF maxF]
 [0 -maxF]
 [0 0]
 [0 maxF]
 [maxF -maxF]
 [maxF 0]
 [maxF maxF]});
oinfo.Name = 'observations';
ainfo.Name = 'forces';

Create the Simulink environment interface.

blks = ["rlCollaborativeTask/Agent A", "rlCollaborativeTask/Agent B"];
obsInfos = {oinfo,oinfo};
actInfos = {ainfo,ainfo};
env = rlSimulinkEnv(mdl,blks,obsInfos,actInfos);

Specify a reset function for the environment. The reset function resetRobots ensures that the
robots start from random initial positions at the beginning of each episode.

env.ResetFcn = @(in) resetRobots(in,RA,RB,RC,boundaryR);

Create Agents

PPO agents rely on actor and critic representations to learn the optimal policy. In this example, the
agents maintain neural network-based function approximators for the actor and critic.

Create the critic neural network and representation. The output of the critic network is the state
value function V s for state s.

% Reset the random seed to improve reproducibility
rng(0)

% Critic networks
criticNetwork = [...
 featureInputLayer(oinfo.Dimension(1),'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','CriticFC1','WeightsInitializer','he')
 reluLayer('Name','CriticRelu1')
 fullyConnectedLayer(64,'Name','CriticFC2','WeightsInitializer','he')
 reluLayer('Name','CriticRelu2')
 fullyConnectedLayer(32,'Name','CriticFC3','WeightsInitializer','he')

 Train Multiple Agents to Perform Collaborative Task

5-105

 reluLayer('Name','CriticRelu3')
 fullyConnectedLayer(1,'Name','CriticOutput')];

% Critic representations
criticOpts = rlRepresentationOptions('LearnRate',1e-4);
criticA = rlValueRepresentation(criticNetwork,oinfo,'Observation',{'observation'},criticOpts);
criticB = rlValueRepresentation(criticNetwork,oinfo,'Observation',{'observation'},criticOpts);

The outputs of the actor network are the probabilities π a s of taking each possible action pair at a
certain state s. Create the actor neural network and representation.

% Actor networks
actorNetwork = [...
 featureInputLayer(oinfo.Dimension(1),'Normalization','none','Name','observation')
 fullyConnectedLayer(128,'Name','ActorFC1','WeightsInitializer','he')
 reluLayer('Name','ActorRelu1')
 fullyConnectedLayer(64,'Name','ActorFC2','WeightsInitializer','he')
 reluLayer('Name','ActorRelu2')
 fullyConnectedLayer(32,'Name','ActorFC3','WeightsInitializer','he')
 reluLayer('Name','ActorRelu3')
 fullyConnectedLayer(numel(ainfo.Elements),'Name','Action')
 softmaxLayer('Name','SM')];

% Actor representations
actorOpts = rlRepresentationOptions('LearnRate',1e-4);
actorA = rlStochasticActorRepresentation(actorNetwork,oinfo,ainfo,...
 'Observation',{'observation'},actorOpts);
actorB = rlStochasticActorRepresentation(actorNetwork,oinfo,ainfo,...
 'Observation',{'observation'},actorOpts);

Create the agents. Both agents use the same options.

agentOptions = rlPPOAgentOptions(...
 'ExperienceHorizon',256,...
 'ClipFactor',0.125,...
 'EntropyLossWeight',0.001,...
 'MiniBatchSize',64,...
 'NumEpoch',3,...
 'AdvantageEstimateMethod','gae',...
 'GAEFactor',0.95,...
 'SampleTime',Ts,...
 'DiscountFactor',0.9995);
agentA = rlPPOAgent(actorA,criticA,agentOptions);
agentB = rlPPOAgent(actorB,criticB,agentOptions);

During training, agents collect experiences until either the experience horizon of 256 steps or the
episode termination is reached, and then train from mini-batches of 64 experiences. This example
uses an objective function clip factor of 0.125 to improve training stability and a discount factor of
0.9995 to encourage long-term rewards.

Train Agents

Specify the following training options to train the agents.

• Run the training for at most 1000 episodes, with each episode lasting at most 5000 time steps.
• Stop the training of an agent when its average reward over 100 consecutive episodes is –10 or

more.

5 Train and Validate Agents

5-106

maxEpisodes = 1000;
maxSteps = 5e3;
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxEpisodes,...
 'MaxStepsPerEpisode',maxSteps,...
 'ScoreAveragingWindowLength',100,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-10);

To train multiple agents, specify an array of agents to the train function. The order of agents in the
array must match the order of agent block paths specified during environment creation. Doing so
ensures that the agent objects are linked to their appropriate I/O interfaces in the environment.
Training these agents can take several hours to complete, depending on the available computational
power.

The MAT file rlCollaborativeTaskAgents contains a set of pretrained agents. You can load the
file and to view the performance of the agents. To train the agents yourself, set doTraining to true.

doTraining = false;
if doTraining
 stats = train([agentA, agentB],env,trainOpts);
else
 load('rlCollaborativeTaskAgents.mat');
end

The following figure shows a snapshot of training progress. You can expect different results due to
randomness in the training process.

 Train Multiple Agents to Perform Collaborative Task

5-107

Simulate Agents

Simulate the trained agents within the environment.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
exp = sim(env,[agentA agentB],simOptions);

5 Train and Validate Agents

5-108

For more information on agent simulation, see rlSimulationOptions and sim.

See Also
rlSimulinkEnv | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

 Train Multiple Agents to Perform Collaborative Task

5-109

Train Multiple Agents for Area Coverage
This example demonstrates a multi-agent collaborative-competitive task in which you train three
proximal policy optimization (PPO) agents to explore all areas within a grid-world environment.

Multi-agent training is supported for Simulink® environments only. As shown in this example, if you
define your environment behavior using a MATLAB® System object, you can incorporate it into a
Simulink environment using a MATLAB System (Simulink) block.

Create Environment

The environment in this example is a 12x12 grid world containing obstacles, with unexplored cells
marked in white and obstacles marked in black. There are three robots in the environment
represented by the red, green, and blue circles. Three proximal policy optimization agents with
discrete action spaces control the robots. To learn more about PPO agents, see “Proximal Policy
Optimization Agents” on page 3-28.

The agents provide one of five possible movement actions (WAIT, UP, DOWN, LEFT, or RIGHT) to their
respective robots. The robots decide whether an action is legal or illegal. For example, an action of
moving LEFT when the robot is located next to the left boundary of the environment is deemed
illegal. Similarly, actions for colliding against obstacles and other agents in the environment are

5 Train and Validate Agents

5-110

illegal actions and draw penalties. The environment dynamics are deterministic, which means the
robots execute legal and illegal actions with 100% and 0% probabilities, respectively. The overall goal
is to explore all cells as quickly as possible.

At each time step, an agent observes the state of the environment through a set of four images that
identify the cells with obstacles, current position of the robot that is being controlled, position of
other robots, and cells that have been explored during the episode. These images are combined to
create a 4-channel 12x12 image observation set. The following figure shows an example of what the
agent controlling the green robot observes for a given time step.

For the grid world environment:

• The search area is a 12x12 grid with obstacles.
• The observation for each agent is a 12x12x4 image.
• The discrete action set is a set of five actions (WAIT=0, UP=1, DOWN=2, LEFT=3, RIGHT=4).
• The simulation terminates when the grid is fully explored or the maximum number of steps is

reached.

At each time step, agents receive the following rewards and penalties.

• +1 for moving to a previously unexplored cell (white).
• -0.5 for an illegal action (attempt to move outside the boundary or collide against other robots and

obstacles)
• -0.05 for an action that results in movement (movement cost).
• -0.1 for an action that results in no motion (lazy penalty).
• If the grid is fully explored, +200 times the coverage contribution for that robot during the

episode (ratio of cells explored to total cells)

Define the locations of obstacles within the grid using a matrix of indices. The first column contains
the row indices, and the second column contains the column indices.

obsMat = [4 3; 5 3; 6 3; 7 3; 8 3; 9 3; 5 11; 6 11; 7 11; 8 11; 5 12; 6 12; 7 12; 8 12];

Initialize the robot positions.

sA0 = [2 2];
sB0 = [11 4];
sC0 = [3 12];
s0 = [sA0; sB0; sC0];

Specify the sample time, simulation time, and maximum number of steps per episode.

 Train Multiple Agents for Area Coverage

5-111

Ts = 0.1;
Tf = 100;
maxsteps = ceil(Tf/Ts);

Open the Simulink model.

mdl = "rlAreaCoverage";
open_system(mdl)

The GridWorld block is a MATLAB System block representing the training environment. The System
object for this environment is defined in GridWorld.m.

In this example, the agents are homogeneous and have the same observation and action
specifications. Create the observation and action specifications for the environment. For more
information, see rlNumericSpec and rlFiniteSetSpec.

% Define observation specifications.
obsSize = [12 12 4];
oinfo = rlNumericSpec(obsSize);
oinfo.Name = 'observations';

% Define action specifications.
numAct = 5;
actionSpace = {0,1,2,3,4};
ainfo = rlFiniteSetSpec(actionSpace);
ainfo.Name = 'actions';

Specify the block paths for the agents

blks = mdl + ["/Agent A (Red)","/Agent B (Green)","/Agent C (Blue)"];

Create the environment interface, specifying the same observation and action specifications for all
three agents.

5 Train and Validate Agents

5-112

env = rlSimulinkEnv(mdl,blks,{oinfo,oinfo,oinfo},{ainfo,ainfo,ainfo});

Specify a reset function for the environment. The reset function resetMap ensures that the robots
start from random initial positions at the beginning of each episode. The random initialization makes
the agents robust to different starting positions and improves training convergence.

env.ResetFcn = @(in) resetMap(in, obsMat);

Create Agents

PPO agents rely on actor and critic representations to learn the optimal policy. In this example, the
agents maintain deep neural network-based function approximators for the actor and critic. Both the
actor and critic have similar network structures with convolution and fully connected layers. The
critic outputs a scalar value representing the state value V s . The actor outputs the probabilities
π a s of taking each of the five actions. For more information, see rlValueRepresentation and
rlStochasticActorRepresentation.

Set the random seed for reproducibility.

rng(0)

Create the actor and critic representations using the following steps.

1 Create the actor and critic deep neural networks.
2 Specify representation options for the actor and critic. In this example, specify the learning rates

and the gradient thresholds. For more information, see rlRepresentationOptions.
3 Create the actor and critic representation objects.

Use the same network structure and representation options for all three agents.

for idx = 1:3
 % Create actor deep neural network.
 actorNetWork = [
 imageInputLayer(obsSize,'Normalization','none','Name','observations')
 convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
 reluLayer('Name','relu1')
 convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
 reluLayer('Name','relu2')
 fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
 reluLayer('Name','relu3')
 fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')
 reluLayer('Name','relu4')
 fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
 reluLayer('Name','relu5')
 fullyConnectedLayer(numAct,'Name','output')
 softmaxLayer('Name','action')];

 % Create critic deep neural network.
 criticNetwork = [
 imageInputLayer(obsSize,'Normalization','none','Name','observations')
 convolution2dLayer(8,16,'Name','conv1','Stride',1,'Padding',1,'WeightsInitializer','he')
 reluLayer('Name','relu1')
 convolution2dLayer(4,8,'Name','conv2','Stride',1,'Padding','same','WeightsInitializer','he')
 reluLayer('Name','relu2')
 fullyConnectedLayer(256,'Name','fc1','WeightsInitializer','he')
 reluLayer('Name','relu3')
 fullyConnectedLayer(128,'Name','fc2','WeightsInitializer','he')

 Train Multiple Agents for Area Coverage

5-113

 reluLayer('Name','relu4')
 fullyConnectedLayer(64,'Name','fc3','WeightsInitializer','he')
 reluLayer('Name','relu5')
 fullyConnectedLayer(1,'Name','output')];

 % Specify representation options for the actor and critic.
 actorOpts = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);
 criticOpts = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);

 % create actor and critic
 actor(idx) = rlStochasticActorRepresentation(actorNetWork,oinfo,ainfo,...
 'Observation',{'observations'},actorOpts);
 critic(idx) = rlValueRepresentation(criticNetwork,oinfo,...
 'Observation',{'observations'},criticOpts);
end

Specify the agent options using rlPPOAgentOptions. Use the same options for all three agents.
During training, agents collect experiences until they reach the experience horizon of 128 steps and
then train from mini-batches of 64 experiences. An objective function clip factor of 0.2 improves
training stability, and a discount factor value of 0.995 encourages long-term rewards.

opt = rlPPOAgentOptions(...
 'ExperienceHorizon',128,...
 'ClipFactor',0.2,...
 'EntropyLossWeight',0.01,...
 'MiniBatchSize',64,...
 'NumEpoch',3,...
 'AdvantageEstimateMethod','gae',...
 'GAEFactor',0.95,...
 'SampleTime',Ts,...
 'DiscountFactor',0.995);

Create the agents using the defined actors, critics, and options.

agentA = rlPPOAgent(actor(1),critic(1),opt);
agentB = rlPPOAgent(actor(2),critic(2),opt);
agentC = rlPPOAgent(actor(3),critic(3),opt);
agents = [agentA,agentB,agentC];

Train Agents

Specify the following options for training the agents.

• Run the training for at most 1000 episodes, with each episode lasting at most 5000 time steps.
• Stop the training of an agent when its average reward over 100 consecutive episodes is 80 or

more.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',1000,...
 'MaxStepsPerEpisode',maxsteps,...
 'Plots','training-progress',...
 'ScoreAveragingWindowLength',100,...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',80);

To train multiple agents, specify an array of agents to the train function. The order of the agents in
the array must match the order of agent block paths specified during environment creation. Doing so

5 Train and Validate Agents

5-114

ensures that the agent objects are linked to the appropriate action and observation specifications in
the environment.

Training is a computationally intensive process that takes several minutes to complete. To save time
while running this example, load pretrained agent parameters by setting doTraining to false. To
train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 stats = train(agents,env,trainOpts);
else
 load('rlAreaCoverageParameters.mat');
 setLearnableParameters(agentA,agentAParams);
 setLearnableParameters(agentB,agentBParams);
 setLearnableParameters(agentC,agentCParams);
end

The following figure shows a snapshot of the training progress. You can expect different results due
to randomness in the training process.

Simulate Agents

Simulate the trained agents within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

 Train Multiple Agents for Area Coverage

5-115

rng(0) % reset the random seed
simOpts = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,agents,simOpts);

The agents successfully cover the entire grid world.

See Also
rlSimulinkEnv | train

More About
• “Train Reinforcement Learning Agents” on page 5-2

5 Train and Validate Agents

5-116

Train Multiple Agents for Path Following Control
This example shows how to train multiple agents to collaboratively perform path-following control
(PFC) for a vehicle. The goal of PFC is to make the ego vehicle travel at a set velocity while
maintaining a safe distance from a lead car by controlling longitudinal acceleration and braking, and
also while keeping the vehicle travelling along the centerline of its lane by controlling the front
steering angle. For more information on PFC, see Path Following Control System (Model Predictive
Control Toolbox).

Overview

An example that trains a reinforcement learning agent to perform PFC is shown in “Train DDPG
Agent for Path-Following Control” on page 5-152. In that example, a single deep deterministic policy
gradient (DDPG) agent is trained to control both the longitudinal speed and lateral steering of the
ego vehicle. In this example, you train two reinforcement learning agents — A DDPG agent provides
continuous acceleration values for the longitudinal control loop and a deep Q-network (DQN) agent
provides discrete steering angle values for the lateral control loop.

The trained agents perform PFC through cooperative behavior and achieve satisfactory results.

Create Environment

The environment for this example includes a simple bicycle model for the ego car and a simple
longitudinal model for the lead car. The training goal is to make thbuild mpce ego car travel at a set
velocity while maintaining a safe distance from lead car by controlling longitudinal acceleration and
braking, while also keeping the ego car travelling along the centerline of its lane by controlling the
front steering angle.

Load the environment parameters.

multiAgentPFCParams

Open the Simulink model.

mdl = "rlMultiAgentPFC";
open_system(mdl)

 Train Multiple Agents for Path Following Control

5-117

In this model, the two reinforcement learning agents (RL Agent1 and RL Agent2) provide longitudinal
acceleration and steering angle signals, respectively.

The simulation terminates when any of the following conditions occur.

• e1 > 1 (magnitude of the lateral deviation exceeds 1)
• Vego < 0 . 5 (longitudinal velocity of the ego car drops below 0.5.
• Drel < 0 (distance between the ego and lead car is below zero)

For the longitudinal controller (RL Agent1):

• The reference velocity for the ego car Vref is defined as follows. If the relative distance is less than
the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V, that is,
tgap * V + Ddefault. The safe distance determines the tracking velocity for the ego car.

• The observations from the environment contain the longitudinal measurements: the velocity error
eV = Vref − V, its integral ∫e, and the ego car longitudinal velocity V.

• The action signal consists of continuous acceleration values between -3 and 2 m/s^2.
• The reward rt, provided at every time step t, is

rt = − (10eV
2 + 100at − 1

2) × 1e−3− 10Ft + Mt

Here, at − 1 is the acceleration input from the previous time step, and:

• Ft = 1 if the simulation is terminated, otherwise Ft = 0.
• Mt = 1 if eV

2 < 1, otherwise Mt = 0.

5 Train and Validate Agents

5-118

For the lateral controller (RL Agent2):

• The observations from the environment contain the lateral measurements: the lateral deviation e1,
relative yaw angle e2, their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The action signal consists of discrete steering angle actions which take values from -15 degrees
(-0.2618 rad) to 15 degrees (0.2618 rad) in steps of 1 degree (0.0175 rad).

• The reward rt, provided at every time step t, is

rt = − (100e1
2 + 500ut − 1

2) × 1e−3− 10Ft + 2Ht

Here, ut − 1 is the steering input from the previous time step, at − 1 is the acceleration input from the
previous time step, and:

• Ft = 1if the simulation is terminated, otherwise Ft = 0.
• Ht = 1 e1

2 < 0 . 01, otherwise Ht = 0.

The logical terms in the reward functions (Ft, Mt, and Ht) penalize the agents if the simulation
terminates early, while encouraging the agents to make both the lateral error and velocity error
small.

Create the observation and action specifications for longitudinal control loop.

obsInfo1 = rlNumericSpec([3 1]);
actInfo1 = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);

Create the observation and action specifications for lateral control loop.

obsInfo2 = rlNumericSpec([6 1]);
actInfo2 = rlFiniteSetSpec((-15:15)*pi/180);

Combine the observation and action specifications as a cell array.

obsInfo = {obsInfo1,obsInfo2};
actInfo = {actInfo1,actInfo2};

Create a Simulink environment interface, specifying the block paths for both agent blocks. The order
of the block paths must match the order of the observation and action specification cell arrays.

blks = mdl + ["/RL Agent1", "/RL Agent2"];
env = rlSimulinkEnv(mdl,blks,obsInfo,actInfo);

Specify a reset function for the environment using the ResetFcn property. The function
pfcResetFcn randomly sets the initial poses of the lead and ego vehicles at the beginning of every
episode during training.

env.ResetFcn = @pfcResetFcn;

Create Agents

For this example you create two reinforcement learning agents. First, fix the random seed for
reproducibility.

rng(0)

Both agents operate at the same sample time in this example. Set the sample time value (in seconds).

 Train Multiple Agents for Path Following Control

5-119

Ts = 0.1;

Longitudinal Control

The agent for the longitudinal control loop is a DDPG agent. A DDPG agent approximates the long-
term reward given observations and actions using a critic value function representation and selects
actions using an actor policy representation. For more information on creating deep neural network
value function and policy representations, see “Create Policy and Value Function Representations” on
page 4-2.

Use the createCCAgent function to create a DDPG agent for longitudinal control. The structure of
this agent is similar to the “Train DDPG Agent for Adaptive Cruise Control” on page 5-126 example.

agent1 = createACCAgent(obsInfo1,actInfo1,Ts);

Lateral Control

The agent for the lateral control loop is a DQN agent. A DQN agent approximates the long-term
reward given observations and actions using a critic value function representation.

Use the createLKAAgent function to create a DQN agent for lateral control. The structure of this
agent is similar to the “Train DQN Agent for Lane Keeping Assist” on page 5-134 example.

agent2 = createLKAAgent(obsInfo2,actInfo2,Ts);

Train Agents

Specify the training options. For this example, use the following options.

• Run each training episode for at most 5000 episodes, with each episode lasting at most maxsteps
time steps.

• Display the training progress in the Episode Manager dialog box (set the Verbose and Plots
options).

• Stop training the DDPG and DQN agents when they receive an average reward greater than 480
and 1195, respectively. When one agent reaches its stop criteria, it simulates its own policy
without learning while the other agent continues training.

Tf = 60; % simulation time
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',[480,1195]);

Train the agents using the train function. Training these agents is a computationally intensive
process that takes several minutes to complete. To save time while running this example, load a
pretrained agent by setting doTraining to false. To train the agent yourself, set doTraining to
true.

doTraining = false;
if doTraining
 % Train the agent.

5 Train and Validate Agents

5-120

 trainingStats = train([agent1,agent2],env,trainingOpts);
else
 % Load pretrained agents for the example.
 load('rlPFCAgents.mat')
end

The following figure shows a snapshot of the training progress for the two agents.

Simulate Agents

To validate the performance of the trained agents, simulate the agents within the Simulink
environment by uncommenting the following commands. For more information on agent simulation,
see rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,[agent1, agent2],simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.1;
x0_lead = 80;
sim(mdl)

The following plots show the results when the lead car is 70 m ahead of the ego car at the beginning
of simulation.

 Train Multiple Agents for Path Following Control

5-121

• The lead car changes speed from 24 m/s to 30 m/s periodically (top-right plot). The ego car
maintains a safe distance throughout the simulation (bottom-right plot).

• From 0 to 30 seconds, the ego car tracks the set velocity (top-right plot) and experiences some
acceleration (top-left plot). After that, the acceleration is reduced to 0.

• The bottom-left plot shows the lateral deviation. As shown in the plot, the lateral deviation is
greatly decreased within 1 second. The lateral deviation remains less than 0.1 m.

5 Train and Validate Agents

5-122

 Train Multiple Agents for Path Following Control

5-123

See Also
rlSimulinkEnv | train

5 Train and Validate Agents

5-124

More About
• “Train Reinforcement Learning Agents” on page 5-2

 Train Multiple Agents for Path Following Control

5-125

Train DDPG Agent for Adaptive Cruise Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for adaptive
cruise control (ACC) in Simulink®. For more information on DDPG agents, see “Deep Deterministic
Policy Gradient Agents” on page 3-17.

Simulink Model

The reinforcement learning environment for this example is the simple longitudinal dynamics for an
ego car and lead car. The training goal is to make the ego car travel at a set velocity while
maintaining a safe distance from lead car by controlling longitudinal acceleration and braking. This
example uses the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive
Control” (Model Predictive Control Toolbox) example.

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 25; % initial velocity for lead car (m/s)
x0_ego = 10; % initial position for ego car (m)
v0_ego = 20; % initial velocity for ego car (m/s)

Specify standstill default spacing (m), time gap (s) and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 30;

To simulate the physical limitations of the vehicle dynamics, constraint the acceleration to the range
[–3,2] m/s^2.

amin_ego = -3;
amax_ego = 2;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

mdl = 'rlACCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

5 Train and Validate Agents

5-126

For this model:

• The acceleration action signal from the agent to the environment is from –3 to 2 m/s^2.
• The reference velocity for the ego car Vref is defined as follows. If the relative distance is less than

the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V; that is,
tgap * V + Ddefault. The safe distance determines the reference tracking velocity for the ego car.

• The observations from the environment are the velocity error e = Vref − Vego, its integral ∫e, and
the ego car longitudinal velocity V.

• The simulation is terminated when longitudinal velocity of the ego car is less than 0, or the
relative distance between the lead car and ego car becomes less than 0.

• The reward rt, provided at every time step t, is

rt = − (0 . 1et
2 + ut − 1

2) + Mt

where ut − 1 is the control input from the previous time step. The logical value Mt = 1 if velocity error
et

2 < = 0 . 25; otherwise, Mt = 0.

Create Environment Interface

Create a reinforcement learning environment interface for the model.

Create the observation specification.

observationInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on velocity error and ego velocity';

Create the action specification.

 Train DDPG Agent for Adaptive Cruise Control

5-127

actionInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actionInfo.Name = 'acceleration';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial condition for the position of the lead car, specify an environment reset function
using an anonymous function handle. The reset function localResetFcn, which is defined at the end
of the example, randomizes the initial position of the lead car.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng('default')

Create DDPG agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
state and action, and one output. For more information on creating a neural network value function
representation, see “Create Policy and Value Function Representations” on page 4-2.

L = 48; % number of neurons
statePath = [
 featureInputLayer(3,'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
 featureInputLayer(1,'Normalization','none','Name','action')
 fullyConnectedLayer(L, 'Name', 'fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);

criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

View the critic network configuration.

plot(criticNetwork)

5 Train and Validate Agents

5-128

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified neural network and options. You must also specify
the action and observation info for the critic, which you obtain from the environment interface. For
more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

Construct the actor similarly to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(3,'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')

 Train DDPG Agent for Adaptive Cruise Control

5-129

 tanhLayer('Name','tanh1')
 scalingLayer('Name','ActorScaling1','Scale',2.5,'Bias',-0.5)];

actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling1'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',64);
agentOptions.NoiseOptions.Variance = 0.6;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 5000 episodes, with each episode lasting at most 600 time
steps.

• Display the training progress in the Episode Manager dialog box.
• Stop training when the agent receives an episode reward greater than 260.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',260);

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load a pretrained agent for the example.
 load('SimulinkACCDDPG.mat','agent')
end

5 Train and Validate Agents

5-130

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the Simulink environment
by uncommenting the following commands. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

x0_lead = 80;
sim(mdl)

The following plots show the simulation results when lead car is 70 (m) ahead of the ego car.

• In the first 28 seconds, the relative distance is greater than the safe distance (bottom plot), so the
ego car tracks set velocity (middle plot). To speed up and reach the set velocity, acceleration is
positive (top plot).

• From 28 to 60 seconds, the relative distance is less than the safe distance (bottom plot), so the
ego car tracks the minimum of the lead velocity and set velocity. From 28 to 36 seconds, the lead
velocity is less than the set velocity (middle plot). To slow down and track the lead car velocity,
acceleration is negative (top plot). From 36 to 60 seconds, the ego car adjusts its acceleration to
track the reference velocity closely (middle plot). Within this time interval, the ego car tracks the
set velocity from 43 to 52 seconds and tracks lead velocity from 36 to 43 seconds and 52 to 60
seconds.

 Train DDPG Agent for Adaptive Cruise Control

5-131

5 Train and Validate Agents

5-132

Close the Simulink model.

bdclose(mdl)

Reset Function

function in = localResetFcn(in)
% Reset the initial position of the lead car.
in = setVariable(in,'x0_lead',40+randi(60,1,1));
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train DDPG Agent for Adaptive Cruise Control

5-133

Train DQN Agent for Lane Keeping Assist
This example shows how to train a deep Q-learning network (DQN) agent for lane keeping assist
(LKA) in Simulink®. For more information on DQN agents, see “Deep Q-Network Agents” on page 3-
10.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for ego vehicle
dynamics. The training goal is to keep the ego vehicle traveling along the centerline of the lanes by
adjusting the front steering angle. This example uses the same vehicle model as in “Lane Keeping
Assist System Using Model Predictive Control” (Model Predictive Control Toolbox). The ego car
dynamics are specified by the following parameters.

m = 1575; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.2; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15; % longitudinal velocity (m/s)

Define the sample time Ts and simulation duration T in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. To simulate the physical
limitations of the ego car, constrain the steering angle to the range [-0.5,0.5] rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for the lateral
deviation is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlLKAMdl';
open_system(mdl);
agentblk = [mdl '/RL Agent'];

5 Train and Validate Agents

5-134

For this model:

• The steering-angle action signal from the agent to the environment is from –15 degrees to 15
degrees.

• The observations from the environment are the lateral deviation e1, the relative yaw angle e2,
their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when the lateral deviation e1 > 1 .

• The reward rt, provided at every time step t, is

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle. To do so, first create the
observation and action specifications.

observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';
actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';

Then, create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

 Train DQN Agent for Lane Keeping Assist

5-135

The interface has a discrete action space where the agent can apply one of 31 possible steering
angles from –15 degrees to 15 degrees. The observation is the six-dimensional vector containing
lateral deviation, relative yaw angle, as well as their derivatives and integrals with respect to time.

To define the initial condition for lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. This reset function randomizes the initial values
for the lateral deviation and relative yaw

% angle.
env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DQN agent

A DQN agent approximates the long-term reward, given observations and actions, using a value
function critic representation.

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.

To create the critic, first create a deep neural network with one input (the six-dimensional observed
state) and one output vector with 31 elements (evenly spaced steering angles from -15 to 15
degrees). For more information on creating a deep neural network value function representation, see
“Create Policy and Value Function Representations” on page 4-2.

nI = observationInfo.Dimension(1); % number of inputs (6)
nL = 24; % number of neurons
nO = numel(actionInfo.Elements); % number of outputs (31)

dnn = [
 featureInputLayer(nI,'Normalization','none','Name','state')
 fullyConnectedLayer(nL,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(nL,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(nO,'Name','fc3')];

View the network configuration.

figure
plot(layerGraph(dnn))

5 Train and Validate Agents

5-136

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation information for the critic, which you obtain from the environment
interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(dnn,observationInfo,actionInfo,...
 'Observation',{'state'},criticOptions);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOptions = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'UseDoubleDQN',true,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',0.99,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',64);

Then, create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOptions);

 Train DQN Agent for Lane Keeping Assist

5-137

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 5000 episodes, with each episode lasting at most
ceil(T/Ts) time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option to
training-progress) and disable the command line display (set the Verbose option to false).

• Stop training when the episode reward reaches –1.
• Save a copy of the agent for each episode where the cumulative reward is greater than –2.5.

For more information, see rlTrainingOptions.

maxepisodes = 5000;
maxsteps = ceil(T/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',-1,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-2.5);

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load the pretrained agent for the example.
 load('SimulinkLKADQNMulti.mat','agent')
end

5 Train and Validate Agents

5-138

Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate the
agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent on deterministic initial conditions, simulate the model in Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As the plots show, the lateral error (top plot) and relative yaw angle (middle plot) are both driven
close to zero. The vehicle starts from off the centerline (–0.4 m) and with a nonzero yaw angle error
(0.2 rad). The lane keeping assist makes the ego car travel along the centerline after about 2.5
seconds. The steering angle (bottom plot) shows that the controller reaches steady state after about 2
seconds.

 Train DQN Agent for Lane Keeping Assist

5-139

5 Train and Validate Agents

5-140

Close the Simulink model.

if ~doTraining
 %bdclose(mdl)
end

Reset Function

function in = localResetFcn(in)
 % reset
 in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
 in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train DQN Agent for Lane Keeping Assist

5-141

Train PPO Agent for Automatic Parking Valet
This example demonstrates the design of a hybrid controller for an automatic search and parking
task. The hybrid controller uses model predictive control (MPC) to follow a reference path in a
parking lot and a trained reinforcement learning (RL) agent to perform the parking maneuver.

The automatic parking algorithm in this example executes a series of maneuvers while
simultaneously sensing and avoiding obstacles in tight spaces. It switches between an adaptive MPC
controller and an RL agent to complete the parking maneuver. The MPC controller moves the vehicle
at a constant speed along a reference path while an algorithm searches for an empty parking spot.
When a spot is found, the RL Agent takes over and executes a pretrained parking maneuver. Prior
knowledge of the environment (the parking lot) including the locations of the empty spots and parked
vehicles is available to the controllers.

Parking Lot

The parking lot is represented by the ParkingLot class, which stores information about the ego
vehicle, empty parking spots, and static obstacles (parked cars). Each parking spot has a unique
index number and an indicator light that is either green (free) or red (occupied). Parked vehicles are
represented in black.

Create a ParkingLot object with a free spot at location 7.

freeSpotIdx = 7;
map = ParkingLot(freeSpotIdx);

Specify an initial pose X0, Y0, θ0 for the ego vehicle. The target pose is determined based on the first
available free spot as the vehicle navigates the parking lot.

5 Train and Validate Agents

5-142

egoInitialPose = [20, 15, 0];

Compute the target pose for the vehicle using the createTargetPose function. The target pose
corresponds to the location in freeSpotIdx.

egoTargetPose = createTargetPose(map,freeSpotIdx)

egoTargetPose = 1×3

 47.7500 4.9000 -1.5708

Sensor Modules

The parking algorithm uses camera and lidar sensors to gather information from the environment.

Camera

The field of view of a camera mounted on the ego vehicle is represented by the area shaded in green
in the following figure. The camera has a field of view φ bounded by ±60 degrees and a maximum
measurement depth dmax of 10 m.

As the ego vehicle moves forward, the camera module senses the parking spots that fall within the
field of view and determines whether a spot is free or occupied. For simplicity, this action is
implemented using geometrical relationships between the spot locations and the current vehicle
pose. A parking spot is within the camera range if di ≤ dmax and φmin ≤ φi ≤ φmax, where di is the
distance to the parking spot and φi is the angle to the parking spot.

 Train PPO Agent for Automatic Parking Valet

5-143

Lidar

The reinforcement leangin agent uses lidar sensor readings to determine the proximity of the ego
vehicle to other vehicles in the environment. The lidar sensor in this example is also modeled using
geometrical relationships. Lidar distances are measured along 12 line segments that radially emerge
from the center of the ego vehicle. When a lidar line intersects an obstacle, it returns the distance of
the obstacle from the vehicle. The maximum measurable lidar distance along any line segment is 6 m.

Auto Parking Valet Model

The parking valet model, including the controllers, ego vehicle, sensors, and parking lot, is
implemented in Simulink®.

Load the auto parking valet parameters.

autoParkingValetParams

Open the Simulink model.

mdl = 'rlAutoParkingValet';
open_system(mdl)

5 Train and Validate Agents

5-144

The ego vehicle dynamics in this model are represented by a single-track bicycle model with two
inputs: vehicle speed v (m/s) and steering angle δ (radians). The MPC and RL controllers are placed
within Enabled Subsystem blocks that are activated by signals representing whether the vehicle has
to search for an empty spot or execute a parking maneuver. The enable signals are determined by the
Camera algorithm within the Vehicle Mode subsystem. Initially, the vehicle is in search mode and the
MPC controller tracks the reference path. When a free spot is found, park mode is activated and the
RL agent executes the parking maneuver.

Adaptive Model Predictive Controller

Create the adaptive MPC controller object for reference trajectory tracking using the
createMPCForParking script. For more information on adaptive MPC, see “Adaptive MPC” (Model
Predictive Control Toolbox).

createMPCForParking

Reinforcement Learning Environment

The environment for training the RL agent is the region shaded in red in the following figure. Due to
symmetry in the parking lot, training within this region is sufficient for the policy to adjust to other
regions after applying appropriate coordinate transformations to the observations. Using this smaller
training region significantly reduces training time compared to training over the entire parking lot.

 Train PPO Agent for Automatic Parking Valet

5-145

For this environment:

• The training region is a 22.5 m x 20 m space with the target spot at its horizontal center.
• The observations are the position errors Xe and Ye of the ego vehicle with respect to the target

pose, the sine and cosine of the true heading angle θ, and the lidar sensor readings.
• The vehicle speed during parking is a constant 2 m/s.
• The action signals are discrete steering angles that range between +/- 45 degrees in steps of 15

degrees.
• The vehicle is considered parked if the errors with respect to target pose are within specified

tolerances of +/- 0.75 m (position) and +/-10 degrees (orientation).
• The episode terminates if the ego vehicle goes out of the bounds of the training region, collides

with an obstacle, or parks successfully.
• The reward rt provided at time t, is:

rt = 2e− 0 . 05Xe
2 + 0 . 04Ye

2
+ 0 . 5e−40θe

2
− 0 . 05δ2 + 100f t − 50gt

Here, Xe, Ye, and θe are the position and heading angle errors of the ego vehicle from the target pose,
and δ is the steering angle. f t (0 or 1) indicates whether the vehicle has parked and gt (0 or 1)
indicates if the vehicle has collided with an obstacle at time t.

The coordinate transformations on vehicle pose X, Y, θ observations for different parking spot
locations are as follows:

5 Train and Validate Agents

5-146

• 1-14: no transformation
• 15-22: X‾ = Y, Y‾ = − X, θ‾ = θ− π/2
• 23-36: X‾ = 100 − X, Y‾ = 60 − Y, θ‾ = θ− π
• 37-40: X‾ = 60 − Y, Y‾ = X, θ‾ = θ− 3π/2
• 41-52: X‾ = 100 − X, Y‾ = 30 − Y, θ‾ = θ + π
• 53-64: X‾ = X, Y‾ = Y − 28, θ‾ = θ

Create the observation and action specifications for the environment.

numObservations = 16;
observationInfo = rlNumericSpec([numObservations 1]);
observationInfo.Name = 'observations';

steerMax = pi/4;
discreteSteerAngles = -steerMax : deg2rad(15) : steerMax;
actionInfo = rlFiniteSetSpec(num2cell(discreteSteerAngles));
actionInfo.Name = 'actions';
numActions = numel(actionInfo.Elements);

Create the Simulink environment interface, specifying the path to the RL Agent block.

blk = [mdl '/RL Controller/RL Agent'];
env = rlSimulinkEnv(mdl,blk,observationInfo,actionInfo);

Specify a reset function for training. The autoParkingValetResetFcn function resets the initial
pose of the ego vehicle to random values at the start of each episode.

env.ResetFcn = @autoParkingValetResetFcn;

For more information on creating Simulink environments, see rlSimulinkEnv.

Create Agent

The RL agent in this example is a proximal policy optimization (PPO) agent with a discrete action
space. PPO agents rely on actor and critic representations to learn the optimal policy. The agent
maintains deep neural network-based function approximators for the actor and critic. To learn more
about PPO agents, see “Proximal Policy Optimization Agents” on page 3-28.

Set the random seed generator for reproducibility.

rng(0)

To create the critic representations, first create a deep neural network with 16 inputs and one output.
The output of the critic network is the state value function for a particular observation.

criticNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','observations')
 fullyConnectedLayer(128,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(128,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(128,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

 Train PPO Agent for Automatic Parking Valet

5-147

Create the critic for the PPO agent using the . For more information, see rlValueRepresentation
and rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,observationInfo,...
 'Observation',{'observations'},criticOptions);

The outputs of the actor networks are the probabilities of taking each possible steering action when
the vehicle is in a certain state. Create the actor deep neural network.

actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','observations')
 fullyConnectedLayer(128,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(128,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(numActions, 'Name', 'out')
 softmaxLayer('Name','actionProb')];

Create a stochastic actor representation for the PPO agent. For more information, see
rlStochasticActorRepresentation.

actorOptions = rlRepresentationOptions('LearnRate',2e-4,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observations'},actorOptions);

Specify the agent options and create the PPO agent. For more information on PPO agent options, see
rlPPOAgentOptions.

agentOpts = rlPPOAgentOptions(...
 'SampleTime',Ts,...
 'ExperienceHorizon',200,...
 'ClipFactor',0.2,...
 'EntropyLossWeight',0.01,...
 'MiniBatchSize',64,...
 'NumEpoch',3,...
 'AdvantageEstimateMethod',"gae",...
 'GAEFactor',0.95,...
 'DiscountFactor',0.998);
agent = rlPPOAgent(actor,critic,agentOpts);

During training, the agent collects experiences until it reaches experience horizon of 200 steps or the
episode terminates and then trains from mini-batches of 64 experiences for three epochs. An
objective function clip factor of 0.2 improves training stability and a discount factor value of 0.998
encourages long term rewards. Variance in critic the output is reduced by the generalized advantage
estimate method with a GAE factor of 0.95.

Train Agent

For this example, you train the agent for a maximum of 10000 episodes, with each episode lasting a
maximum of 200 time steps. The training terminates when the maximum number of episodes is
reached or the average reward over 100 episodes exceeds 100.

Specify the options for training using an rlTrainingOptions object.

trainOpts = rlTrainingOptions(...
 'MaxEpisodes',10000,...

5 Train and Validate Agents

5-148

 'MaxStepsPerEpisode',200,...
 'ScoreAveragingWindowLength',200,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',80);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 trainingStats = train(agent,env,trainOpts);
else
 load('rlAutoParkingValetAgent.mat','agent');
end

Simulate Agent

Simulate the model to park the vehicle in the free parking spot. To simulate the vehicle parking in
different locations, change the free spot location in the following code.

freeSpotIdx = 7; % free spot location
sim(mdl);

 Train PPO Agent for Automatic Parking Valet

5-149

The vehicle reaches the target pose within the specified error tolerances of +/- 0.75 m (position) and
+/-10 degrees (orientation).

To view the ego vehicle position and orientation, open the Ego Vehicle Pose scope.

5 Train and Validate Agents

5-150

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train PPO Agent for Automatic Parking Valet

5-151

Train DDPG Agent for Path-Following Control
This example shows how to train a deep deterministic policy gradient (DDPG) agent for path-
following control (PFC) in Simulink®. For more information on DDPG agents, see “Deep
Deterministic Policy Gradient Agents” on page 3-17.

Simulink Model

The reinforcement learning environment for this example is a simple bicycle model for the ego car
and a simple longitudinal model for the lead car. The training goal is to make the ego car travel at a
set velocity while maintaining a safe distance from lead car by controlling longitudinal acceleration
and braking, and also while keeping the ego car travelling along the centerline of its lane by
controlling the front steering angle. For more information on PFC, see Path Following Control System
(Model Predictive Control Toolbox). The ego car dynamics are specified by the following parameters.

m = 1600; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.4; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
tau = 0.5; % longitudinal time constant

Specify the initial position and velocity for the two vehicles.

x0_lead = 50; % initial position for lead car (m)
v0_lead = 24; % initial velocity for lead car (m/s)
x0_ego = 10; % initial position for ego car (m)
v0_ego = 18; % initial velocity for ego car (m/s)

Specify the standstill default spacing (m), time gap (s), and driver-set velocity (m/s).

D_default = 10;
t_gap = 1.4;
v_set = 28;

To simulate the physical limitations of the vehicle dynamics, constrain the acceleration to the range
[–3,2] (m/s^2), and steering angle is constrained to be [–0.5,0.5] (rad).

amin_ego = -3;
amax_ego = 2;
umin_ego = -0.5;
umax_ego = 0.5;

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for lateral deviation
is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Define the sample time Ts and simulation duration Tf in seconds.

Ts = 0.1;
Tf = 60;

Open the model.

5 Train and Validate Agents

5-152

mdl = 'rlPFCMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

For this model:

• The action signal consists of acceleration and steering angle actions. The acceleration action
signal takes value between –3 and 2 (m/s^2). The steering action signal takes a value between –15
degrees (–0.2618 rad) and 15 degrees (0.2618 rad).

• The reference velocity for the ego car Vref is defined as follows. If the relative distance is less than
the safe distance, the ego car tracks the minimum of the lead car velocity and driver-set velocity.
In this manner, the ego car maintains some distance from the lead car. If the relative distance is
greater than the safe distance, the ego car tracks the driver-set velocity. In this example, the safe
distance is defined as a linear function of the ego car longitudinal velocity V, that is,
tgap * V + Ddefault. The safe distance determines the tracking velocity for the ego car.

• The observations from the environment contain the longitudinal measurements: the velocity error
eV = Vref − Vego, its integral ∫e, and the ego car longitudinal velocity V. In addition, the
observations contain the lateral measurements: the lateral deviation e1, relative yaw angle e2,
their derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation terminates when the lateral deviation e1 > 1, when the longitudinal velocity
Vego < 0 . 5, or when the relative distance between the lead car and ego car Drel < 0.

• The reward rt, provided at every time step t, is

rt = − (100e1
2 + 500ut − 1

2 + 10eV
2 + 100at − 1

2) × 1e−3− 10Ft + 2Ht + Mt

where ut − 1 is the steering input from the previous time step t − 1, at − 1 is the acceleration input
from the previous time step. The three logical values are as follows.

 Train DDPG Agent for Path-Following Control

5-153

• Ft = 1if simulation is terminated, otherwise Ft = 0
• Ht = 1 if lateral error e1

2 < 0 . 01, otherwise Ht = 0
• Mt = 1 if velocity error eV

2 < 1, otherwise Mt = 0

The three logical terms in the reward encourage the agent to make both lateral error and velocity
error small, and in the meantime, penalize the agent if the simulation is terminated early.

Create Environment Interface

Create an environment interface for the Simulink model.

Create the observation specification.

observationInfo = rlNumericSpec([9 1],'LowerLimit',-inf*ones(9,1),'UpperLimit',inf*ones(9,1));
observationInfo.Name = 'observations';

Create the action specification.

actionInfo = rlNumericSpec([2 1],'LowerLimit',[-3;-0.2618],'UpperLimit',[2;0.2618]);
actionInfo.Name = 'accel;steer';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial conditions, specify an environment reset function using an anonymous function
handle. The reset function localResetFcn, which is defined at the end of the example, randomizes
the initial position of the lead car, the lateral deviation, and the relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. To create the critic, first create a deep neural network with two inputs,
the state and action, and one output. For more information on creating a deep neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

L = 100; % number of neurons
statePath = [
 featureInputLayer(9,'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(1,'Name','fc4')];

actionPath = [
 featureInputLayer(2,'Normalization','none','Name','action')

5 Train and Validate Agents

5-154

 fullyConnectedLayer(L,'Name','fc5')];

criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork,actionPath);

criticNetwork = connectLayers(criticNetwork,'fc5','add/in2');

View the critic network configuration.

figure
plot(criticNetwork)

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'action'},criticOptions);

A DDPG agent decides which action to take given observations by using an actor representation. To
create the actor, first create a deep neural network with one input, the observation, and one output,
the action.

 Train DDPG Agent for Path-Following Control

5-155

Construct the actor similarly to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [
 featureInputLayer(9,'Normalization','none','Name','observation')
 fullyConnectedLayer(L,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(L,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(L,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(2,'Name','fc4')
 tanhLayer('Name','tanh1')
 scalingLayer('Name','ActorScaling1','Scale',[2.5;0.2618],'Bias',[-0.5;0])];
actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);
actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'observation'},'Action',{'ActorScaling1'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',64);
agentOptions.NoiseOptions.Variance = [0.6;0.1];
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Then, create the DDPG agent using the specified actor representation, critic representation, and
agent options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options. For this example, use the following options:

• Run each training episode for at most 10000 episodes, with each episode lasting at most
maxsteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Verbose and Plots
options).

• Stop training when the agent receives an cumulative episode reward greater than 1700.

For more information, see rlTrainingOptions.

maxepisodes = 1e4;
maxsteps = ceil(Tf/Ts);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',1700);

5 Train and Validate Agents

5-156

Train the agent using the train function. Training is a computationally intensive process that takes
several minutes to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load a pretrained agent for the example.
 load('SimulinkPFCDDPG.mat','agent')
end

Simulate DDPG Agent

To validate the performance of the trained agent, simulate the agent within the Simulink environment
by uncommenting the following commands. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.1;

 Train DDPG Agent for Path-Following Control

5-157

x0_lead = 80;
sim(mdl)

The following plots show the simulation results when the lead car is 70 (m) ahead of the ego car.

• In the first 35 seconds, the relative distance is greater than the safe distance (bottom-right plot),
so the ego car tracks the set velocity (top-right plot). To speed up and reach the set velocity, the
acceleration is mostly nonnegative (top-left plot).

• From 35 to 42 seconds, the relative distance is mostly less than the safe distance (bottom-right
plot), so the ego car tracks the minimum of the lead velocity and set velocity. Because the lead
velocity is less than the set velocity (top-right plot), to track the lead velocity, the acceleration
becomes nonzero (top-left plot).

• From 42 to 58 seconds, the ego car tracks the set velocity (top-right plot) and the acceleration
remains zero (top-left plot).

• From 58 to 60 seconds, the relative distance becomes less than the safe distance (bottom-right
plot), so the ego car slows down and tracks the lead velocity.

• The bottom-left plot shows the lateral deviation. As shown in the plot, the lateral deviation is
greatly decreased within 1 second. The lateral deviation remains less than 0.05 m.

Close the Simulink model.

bdclose(mdl)

5 Train and Validate Agents

5-158

Reset Function

function in = localResetFcn(in)
in = setVariable(in,'x0_lead',40+randi(60,1,1)); % random value for initial position of lead car
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train DDPG Agent for Path-Following Control

5-159

Train DQN Agent for Lane Keeping Assist Using Parallel
Computing

This example shows how to train a deep Q-learning network (DQN) agent for lane keeping assist
(LKA) in Simulink® using parallel training. For an example that shows how to train the agent without
using parallel training, see “Train DQN Agent for Lane Keeping Assist” on page 5-134.

For more information on DQN agents, see “Deep Q-Network Agents” on page 3-10. For an example
that trains a DQN agent in MATLAB®, see “Train DQN Agent to Balance Cart-Pole System” on page
5-8.

DQN Parallel Training Overview

In a DQN agent, each worker generates new experiences from its copy of the agent and the
environment. After every N steps, the worker sends experiences to the host agent. The host agent
updates its parameters as follows.

• For asynchronous training, the host agent learns from received experiences without waiting for all
workers to send experiences, and sends the updated parameters back to the worker that provided
the experiences. Then, the worker continues to generate experiences from its environment using
the updated parameters.

• For synchronous training, the host agent waits to receive experiences from all of the workers and
learns from these experiences. The host then sends updated parameters to all the workers at the
same time. Then, all workers continue to generate experiences using the updated parameters.

Simulink Model for Ego Car

The reinforcement learning environment for this example is a simple bicycle model for ego vehicle
dynamics. The training goal is to keep the ego vehicle traveling along the centerline of the lanes by
adjusting the front steering angle. This example uses the same vehicle model as “Train DQN Agent
for Lane Keeping Assist” on page 5-134.

m = 1575; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.2; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15; % longitudinal velocity (m/s)

Define the sample time Ts and simulation duration T in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego car. To simulate the physical
steering limits of the ego car, constrain the steering angle to the range [–0.5,0.5] rad.

u_min = -0.5;
u_max = 0.5;

The curvature of the road is defined by a constant 0.001 (m−1). The initial value for the lateral
deviation is 0.2 m and the initial value for the relative yaw angle is –0.1 rad.

5 Train and Validate Agents

5-160

rho = 0.001;
e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlLKAMdl';
open_system(mdl)
agentblk = [mdl '/RL Agent'];

For this model:

• The steering-angle action signal from the agent to the environment is from –15 degrees to 15
degrees.

• The observations from the environment are the lateral deviation e1, relative yaw angle e2, their
derivatives ė1 and ė2, and their integrals ∫e1 and ∫e2.

• The simulation is terminated when the lateral deviation e1 > 1 .

• The reward rt, provided at every time step t, is

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

where u is the control input from the previous time step t − 1.

Create Environment Interface

Create a reinforcement learning environment interface for the ego vehicle.

Define the observation information.

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-161

observationInfo = rlNumericSpec([6 1],'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';
observationInfo.Description = 'information on lateral deviation and relative yaw angle';

Define the action information.

actionInfo = rlFiniteSetSpec((-15:15)*pi/180);
actionInfo.Name = 'steering';

Create the environment interface.

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

The interface has a discrete action space where the agent can apply one of 31 possible steering
angles from –15 degrees to 15 degrees. The observation is the six-dimensional vector containing
lateral deviation, relative yaw angle, as well as their derivatives and integrals with respect to time.

To define the initial condition for the lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. localResetFcn, which is defined at the end of
this example, randomizes the initial lateral deviation and relative yaw angle.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DQN Agent

DQN agents can use multi-output Q-value critic approximators, which are generally more efficient. A
multi-output approximator has observations as inputs and state-action values as outputs. Each output
element represents the expected cumulative long-term reward for taking the corresponding discrete
action from the state indicated by the observation inputs.

To create the critic, first create a deep neural network with one input (the six-dimensional observed
state) and one output vector with 31 elements (evenly spaced steering angles from -15 to 15
degrees). For more information on creating a deep neural network value function representation, see
“Create Policy and Value Function Representations” on page 4-2.

nI = observationInfo.Dimension(1); % number of inputs (6)
nL = 120; % number of neurons
nO = numel(actionInfo.Elements); % number of outputs (31)

dnn = [
 featureInputLayer(nI,'Normalization','none','Name','state')
 fullyConnectedLayer(nL,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(nL,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(nO,'Name','fc3')];

View the network configuration.

figure
plot(layerGraph(dnn))

5 Train and Validate Agents

5-162

Specify options for the critic representation using rlRepresentationOptions.

criticOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-4);

Create the critic representation using the specified deep neural network and options. You must also
specify the action and observation info for the critic, which you obtain from the environment
interface. For more information, see rlQValueRepresentation.

critic = rlQValueRepresentation(dnn,observationInfo,actionInfo,'Observation',{'state'},criticOptions);

To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.

agentOpts = rlDQNAgentOptions(...
 'SampleTime',Ts,...
 'UseDoubleDQN',true,...
 'TargetSmoothFactor',1e-3,...
 'DiscountFactor',0.99,...
 'ExperienceBufferLength',1e6,...
 'MiniBatchSize',256);

agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Then create the DQN agent using the specified critic representation and agent options. For more
information, see rlDQNAgent.

agent = rlDQNAgent(critic,agentOpts);

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-163

Training Options

To train the agent, first specify the training options. For this example, use the following options.

• Run each training for at most 10000 episodes, with each episode lasting at most ceil(T/Ts)
time steps.

• Display the training progress in the Episode Manager dialog box only (set the Plots and
Verbose options accordingly).

• Stop training when the episode reward reaches -1.
• Save a copy of the agent for each episode where the cumulative reward is greater than 100.

For more information, see rlTrainingOptions.

maxepisodes = 10000;
maxsteps = ceil(T/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue', -1,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',100);

Parallel Training Options

To train the agent in parallel, specify the following training options.

• Set the UseParallel option to true.
• Train agent in parallel asynchronously by setting the ParallelizationOptions.Mode option to

"async".
• After every 30 steps, each worker sends experiences to the host.
• DQN agent requires workers to send "experiences" to the host.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = "async";
trainOpts.ParallelizationOptions.DataToSendFromWorkers = "experiences";
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;

For more information, see rlTrainingOptions.

Train Agent

Train the agent using the train function. Training the agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness of the parallel training, you can expect different training results from the plot below. The
plot shows the result of training with four workers.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);

5 Train and Validate Agents

5-164

else
 % Load pretrained agent for the example.
 load('SimulinkLKADQNParallel.mat','agent')
end

Simulate DQN Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate the
agent within the environment. For more information on agent simulation, see
rlSimulationOptions and sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To demonstrate the trained agent using deterministic initial conditions, simulate the model in
Simulink.

e1_initial = -0.4;
e2_initial = 0.2;
sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are both driven to
zero. The vehicle starts from off centerline (–0.4 m) and nonzero yaw angle error (0.2 rad). The LKA
enables the ego car to travel along the centerline after 2.5 seconds. The steering angle (top plot)
shows that the controller reaches steady state after 2 seconds.

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-165

5 Train and Validate Agents

5-166

Local Function

function in = localResetFcn(in)
% reset
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand)); % random value for lateral deviation
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand)); % random value for relative yaw angle
end

See Also
train

More About
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Train Reinforcement Learning Agents” on page 5-2
• “Create Policy and Value Function Representations” on page 4-2

 Train DQN Agent for Lane Keeping Assist Using Parallel Computing

5-167

Train Biped Robot to Walk Using Reinforcement Learning
Agents

This example shows how to train a biped robot to walk using both a deep deterministic policy
gradient (DDPG) agent and a twin-delayed deep deterministic policy gradient (TD3) agent and
compares the performance of these trained agents. The robot in this example is modeled in
Simscape™ Multibody™.

For more information on these agents, see “Deep Deterministic Policy Gradient Agents” on page 3-17
and “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-21.

For the purpose of comparison in this example, both agents are trained on the biped robot
environment with same model parameters. The agents are also configured to have the following
settings in common.

• Initial condition strategy of the biped robot
• Network structure of actor and critic, inspired by [2]
• Options for actor and critic representations
• Training options (sample time, discount factor, mini-batch size, experience buffer length,

exploration noise)

Biped Robot Model

The reinforcement learning environment for this example is a biped robot. The training goal is to
make the robot walk in a straight line using minimal control effort.

Load the parameters of the model into the MATLAB® workspace.

robotParametersRL

5 Train and Validate Agents

5-168

Open the Simulink model.

mdl = 'rlWalkingBipedRobot';
open_system(mdl)

The robot is modeled using Simscape Multibody.

For this model:

• In the neutral 0 rad position, both of the legs are straight and the ankles are flat.

 Train Biped Robot to Walk Using Reinforcement Learning Agents

5-169

• The foot contact is modeled using the Spatial Contact Force (Simscape Multibody) block from
Simscape Multibody.

• The agent can control 3 individual joints (ankle, knee, and hip) on both legs of the robot by
applying torque signals from -3 to 3 N·m. The actual computed action signals are normalized
between -1 and 1.

The environment provides 29 observations to the agent. The observations are:

• Y (lateral) and Z (vertical) translations of the torso center of mass. The translation in the Z
direction is normalized to a similar range as the other observations.

• X (forward), Y (lateral), and Z (vertical) translation velocities.
• Yaw, pitch, and roll angles of the torso.
• Yaw, pitch, and roll angular velocities of the torso.
• Angular positions and velocities of the 3 joints (ankle, knee, hip) on both legs.
• Action values from the previous time step.

The episode terminates if either of the following conditions occur.

• The robot torso center of mass is less than 0.1 m in the Z direction (fallen) or more than 1 m in the
Y direction (lateral motion).

• The absolute value of either the roll, pitch, or yaw is greater than 0.7854 rad.

The following reward function rt, which is provided at every time step is inspired by [1]. This reward
function encourages the agent to move forward by providing a positive reward for positive forward
velocity. It also encourages the agent to avoid episode termination by providing a constant reward
(25Ts

Tf) at every time step. The other terms in the reward function are penalties for substantial
changes in lateral and vertical translations, and for the use of excess control effort.

rt = vx− 3y2− 50z2 + 25Ts
Tf − 0 . 02∑

i
ut − 1

i 2

Here:

• vx is the translation velocity in the X direction (forward toward goal) of the robot.
• y is the lateral translation displacement of the robot from the target straight line trajectory.
• z is the normalized vertical translation displacement of the robot center of mass.
• ut − 1

i is the torque from joint i from the previous time step.
• Ts is the sample time of the environment.
• Tf is the final simulation time of the environment.

Create Environment Interface

Create the observation specification.

numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Create the action specification.

5 Train and Validate Agents

5-170

numAct = 6;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit',1);
actInfo.Name = 'foot_torque';

Create the environment interface for the walking robot model.

blk = [mdl,'/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);
env.ResetFcn = @(in) walkerResetFcn(in,upper_leg_length/100,lower_leg_length/100,h/100);

Select and Create Agent for Training

This example provides the option to train the robot either using either a DDPG or TD3 agent. To
simulate the robot with the agent of your choice, set the AgentSelection flag accordingly.

AgentSelection = 'TD3';
switch AgentSelection
 case 'DDPG'
 agent = createDDPGAgent(numObs,obsInfo,numAct,actInfo,Ts);
 case 'TD3'
 agent = createTD3Agent(numObs,obsInfo,numAct,actInfo,Ts);
 otherwise
 disp('Enter DDPG or TD3 for AgentSelection')
end

The createDDPGAgent and createTD3Agent helper functions perform the following actions.

• Create actor and critic networks.
• Specify options for actor and critic representations.
• Create actor and critic representations using created networks and specified options.
• Configure agent specific options.
• Create agent.

DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. A DDPG agent decides which action to take given observations by using an
actor representation. The actor and critic networks for this example are inspired by [2].

For details on the creating the DDPG agent, see the createDDPGAgent helper function. For
information on configuring DDPG agent options, see rlDDPGAgentOptions.

For more information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 4-2. For an example that creates neural networks
for DDPG agents, see “Train DDPG Agent to Control Double Integrator System” on page 5-31.

TD3 Agent

TD3 agent approximates the long-term reward given observations and actions using 2 critic value
function representations. A TD3 agent decides which action to take given observations using an actor
representation. The structure of the actor and critic networks used for this agent are the same as the
ones used for DDPG agent.

A DDPG agent can overestimate the Q value. Since this Q value is then used to update the policy
(actor) of the agent, the resultant policy can be suboptimal and accumulating training errors can lead

 Train Biped Robot to Walk Using Reinforcement Learning Agents

5-171

to divergent behavior. The TD3 algorithm is an extension of DDPG with improvements that make it
more robust by preventing overestimation of Q values [3].

• Two critic networks — TD3 agents learn two critic networks independently and use the minimum
value function estimate to update the actor (policy). Doing so prevents accumulation of error in
subsequent steps and overestimation of Q values.

• Addition of target policy noise — Clipped noise is added to target actions to smooth out Q function
values over similar actions. Doing so prevents learning an incorrect sharp peak of noisy value
estimate.

• Delayed policy and target updates — For a TD3 agent it is recommended to delay the actor
network update, as it allows more time for the Q function to reduce error (get closer to the
required target) before updating the policy. Doing so prevents variance in values estimates and
results in a more high quality policy update.

For details on the creating the TD3 agent, see the createTD3Agent helper function. For information
on configuring TD3 agent options, see rlTD3AgentOptions.

Specify Training Options and Train Agent

For this example, the training options for the DDPG and TD3 agents are the same. These options are
based on the following requirements.

• Run each training session for 2000 episodes with each episode lasting at most maxSteps time
steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Terminate the training only when it reaches the maximum number of episodes (maxEpisodes).
Doing so allows the comparison of the learning curves for multiple agents over the entire training
session.

For more information and additional options, see rlTrainingOptions.

maxEpisodes = 2000;
maxSteps = floor(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxEpisodes,...
 'MaxStepsPerEpisode',maxSteps,...
 'ScoreAveragingWindowLength',250,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeCount',...
 'StopTrainingValue',maxEpisodes,...
 'SaveAgentCriteria','EpisodeCount',...
 'SaveAgentValue',maxEpisodes);

To train the agent in parallel, specify the following training options. Training in parallel requires
Parallel Computing Toolbox™. If you do not have Parallel Computing Toolbox software installed, set
UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, have each worker send experiences to the host. DDPG and TD3 agents

require workers to send experiences to the host.

5 Train and Validate Agents

5-172

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

Train the agent using the train function. This process is computationally intensive and takes several
hours to complete for each agent. To save time while running this example, load a pretrained agent
by setting doTraining to false. To train the agent yourself, set doTraining to true. Due to
randomness in the parallel training, you can expect different training results from the plots below.
The pretrained agents were trained in parallel using four workers.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load a pretrained agent for the selected agent type.
 if strcmp(AgentSelection,'DDPG')
 load('rlWalkingBipedRobotDDPG.mat','agent')
 else
 load('rlWalkingBipedRobotTD3.mat','agent')
 end
end

 Train Biped Robot to Walk Using Reinforcement Learning Agents

5-173

For the preceding example training curves, the average time per training step for the DDPG and TD3
agents are 0.11 and 0.12 seconds, respectively. The TD3 agent takes more training time per step
because it updates two critic networks compared to the single critic used for DDPG.

Simulate Trained Agents

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the biped robot environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-174

Compare Agent Performance

For the following agent comparison, each agent was trained five times using a different random seed
each time. Due to the random exploration noise and the randomness in the parallel training, the
learning curve for each run is different. Since the training of agents for multiple runs takes several
days to complete, this comparison uses pretrained agents.

For the DDPG and TD3 agents, plot the average and standard deviation of the episode reward (top
plot) and the episode Q0 value (bottom plot). The episode Q0 value is the critic estimate of the
discounted long-term reward at the start of each episode given the initial observation of the
environment. For a well-designed critic, the episode Q0 value approaches the true discounted long-
term reward.

comparePerformance('DDPGAgent','TD3Agent')

 Train Biped Robot to Walk Using Reinforcement Learning Agents

5-175

5 Train and Validate Agents

5-176

Based on the Learning curve comparison plot:

1 The DDPG appears to pick up learning faster (around episode number 600 on an average) but
hits a local minimum. TD3 starts slower but eventually achieves higher rewards than DDPG as it
avoids overestimation of Q values.

2 The TD3 Agent shows a steady improvement in its learning curve, which suggests improved
stability when compared to the DDPG agent.

Based on the Episode Q0 comparison plot:

1 For the TD3 agent, the critic estimate of the discounted long term reward (for 2000 episodes) is
lower compared to the DDPG agent. This difference is because the TD3 algorithm takes a
conservative approach in updating its targets by using minimum of two Q functions. This
behavior is further enhanced because of delayed updates to the targets.

2 Although the TD3 estimate for these 2000 episodes is low, the TD3 agent shows a steady increase
in the episode Q0 value,s unlike DDPG agent.

In this example the training was stopped at 2000 episodes. For a larger training period, the TD3
agent with its steady increase in estimates shows the potential to converge to the true discounted
long-term reward.

For another example on how to train a DDPG agent to walk an humanoid robot modeled in
Simscape™ Multibody™ see “Train a Humanoid Walker” (Simscape Multibody). For an example on
how to train a DDPG agent to walk a quadruped robot see “Quadruped Robot Locomotion Using
DDPG Agent” on page 5-179.

 Train Biped Robot to Walk Using Reinforcement Learning Agents

5-177

References

[1] Heess, Nicolas, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
et al. ‘Emergence of Locomotion Behaviours in Rich Environments’. ArXiv:1707.02286 [Cs], 10 July
2017. https://arxiv.org/abs/1707.02286.

[2] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. ‘Continuous Control with Deep Reinforcement Learning’.
ArXiv:1509.02971 [Cs, Stat], 5 July 2019. https://arxiv.org/abs/1509.02971.

[3] Fujimoto, Scott, Herke van Hoof, and David Meger. ‘Addressing Function Approximation Error in
Actor-Critic Methods’. ArXiv:1802.09477 [Cs, Stat], 22 October 2018. https://arxiv.org/abs/
1802.09477.

See Also
train

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Define Reward Signals” on page 2-7

5 Train and Validate Agents

5-178

https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477

Quadruped Robot Locomotion Using DDPG Agent
This example shows how to train a quadruped robot to walk using a deep deterministic policy
gradient (DDPG) agent. The robot in this example is modeled using Simscape™ Multibody™. For
more information on DDPG agents, see “Twin-Delayed Deep Deterministic Policy Gradient Agents” on
page 3-21.

Load the necessary parameters into the base workspace in MATLAB®.

initializeRobotParameters

Quadruped Robot Model

The environment for this example is a quadruped robot, and the training goal is to make the robot
walk in a straight line using minimal control effort.

The robot is modeled using Simscape Multibody and the Simscape Multibody Contact Forces Library.
The main structural components are four legs and a torso. The legs are connected to the torso
through revolute joints. Action values provided by the RL Agent block are scaled and converted into
joint torque values. These joint torque values are used by the revolute joints to compute motion.

Open the model.

mdl = 'rlQuadrupedRobot';
open_system(mdl)

 Quadruped Robot Locomotion Using DDPG Agent

5-179

https://www.mathworks.com/matlabcentral/fileexchange/47417-simscape-multibody-contact-forces-library

Observations

The robot environment provides 44 observations to the agent, each normalized between –1 and 1.
These observations are:

• Y (vertical) and Y (lateral) position of the torso center of mass
• Quaternion representing the orientation of the torso
• X (forward), Y (vertical), and Z (lateral) velocities of the torso at the center of mass
• Roll, pitch, and yaw rates of the torso
• Angular positions and velocities of the hip and knee joints for each leg
• Normal and friction force due to ground contact for each leg
• Action values (torque for each joint) from the previous time step

For all four legs, the initial values for the hip and knee joint angles are set to –0.8234 and 1.6468 rad,
respectively. The neutral positions of the joints are at 0 rad. The legs are in neutral position when
they are stretched to their maximum and are aligned perpendicularly to the ground.

5 Train and Validate Agents

5-180

Actions

The agent generates eight actions normalized between –1 and 1. After multiplying with a scaling
factor, these correspond to the eight joint torque signals for the revolute joints. The overall joint
torque bounds are +/– 10 N·m for each joint.

Reward

The following reward is provided to the agent at each time step during training. This reward function
encourages the agent to move forward by providing a positive reward for positive forward velocity. It
also encourages the agent to avoid early termination by providing a constant reward (25Ts/Tf) at
each time step. The remaining terms in the reward function are penalties that discourage unwanted
states, such as large deviations from the desired height and orientation or the use of excessive joint
torques.

rt = vx + 25
Ts
Tf
− 50y2− 20θ2− 0 . 02∑

i
ut − 1

i 2

where

• vx is the velocity of the torso's center of mass in the x-direction.
• Ts and Tf are the sample time and final simulation time of the environment, respectively.
• y is the scaled height error of the torso's center of mass from the desired height of 0.75 m.
• θ is the pitch angle of the torso.
• ut − 1

i is the action value for joint i from the previous time step.

Episode Termination

During training or simulation, the episode terminates if any of the following situations occur.

• The height of the torso center of mass from the ground is below 0.5 m (fallen).
• The head or tail of the torso is below the ground.
• Any knee joint is below the ground.
• Roll, pitch, or yaw angles are outside bounds (+/– 0.1745, +/– 0.1745, and +/– 0.3491 rad,

respectively).

Create Environment Interface

Specify the parameters for the observation set.

numObs = 44;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = 'observations';

Specify the parameters for the action set.

numAct = 8;
actInfo = rlNumericSpec([numAct 1],'LowerLimit',-1,'UpperLimit', 1);
actInfo.Name = 'torque';

Create the environment using the reinforcement learning model.

 Quadruped Robot Locomotion Using DDPG Agent

5-181

blk = [mdl, '/RL Agent'];
env = rlSimulinkEnv(mdl,blk,obsInfo,actInfo);

During training, the reset function introduces random deviations into the initial joint angles and
angular velocities.

env.ResetFcn = @quadrupedResetFcn;

Create DDPG agent

The DDPG agent approximates the long-term reward given observations and actions by using a critic
value function representation. The agent also decides which action to take given the observations,
using an actor representation. The actor and critic networks for this example are inspired by [2].

For more information on creating a deep neural network value function representation, see “Create
Policy and Value Function Representations” on page 4-2. For an example that creates neural networks
for DDPG agents, see “Train DDPG Agent to Control Double Integrator System” on page 5-31.

Create the networks in the MATLAB workspace using the createNetworks helper function.

createNetworks

You can also create your actor and critic networks interactively using the Deep Network Designer
app.

View the critic network configuration.

plot(criticNetwork)

Specify the agent options using rlDDPGAgentOptions.

agentOptions = rlDDPGAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.MiniBatchSize = 250;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.NoiseOptions.MeanAttractionConstant = 0.15;
agentOptions.NoiseOptions.Variance = 0.1;

Create the rlDDPGAgent object for the agent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Specify Training Options

To train the agent, first specify the following training options:

• Run each training episode for at most 10,000 episodes, with each episode lasting at most
maxSteps time steps.

• Display the training progress in the Episode Manager dialog box (set the Plots option) and
disable the command line display (set the Verbose option).

• Stop training when the agent receives an average cumulative reward greater than 190 over 250
consecutive episodes.

• Save a copy of the agent for each episode where the cumulative reward is greater than 200.

5 Train and Validate Agents

5-182

maxEpisodes = 10000;
maxSteps = floor(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxEpisodes,...
 'MaxStepsPerEpisode',maxSteps,...
 'ScoreAveragingWindowLength',250,...
 'Verbose',true,...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',190,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',200);

To train the agent in parallel, specify the following training options. Training in parallel requires
Parallel Computing Toolbox™ software. If you do not have Parallel Computing Toolbox™ software
installed, set UseParallel to false.

• Set the UseParallel option to true.
• Train the agent in parallel asynchronously.
• After every 32 steps, each worker sends experiences to the host.
• DDPG agents require workers to send 'Experiences' to the host.

trainOpts.UseParallel = true;
trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDataIsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromWorkers = 'Experiences';

Train Agent

Train the agent using the train function. Due to the complexity of the robot model, this process is
computationally intensive and takes several hours to complete. To save time while running this
example, load a pretrained agent by setting doTraining to false. To train the agent yourself, set
doTraining to true. Due to the randomness of parallel training, you can expect different training
results from the plot below.

doTraining = false;
if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load a pretrained agent for the example.
 load('rlQuadrupedAgent.mat','agent')
end

 Quadruped Robot Locomotion Using DDPG Agent

5-183

Simulate Trained Agent

Fix the random generator seed for reproducibility.

rng(0)

To validate the performance of the trained agent, simulate it within the robot environment. For more
information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experience = sim(env,agent,simOptions);

5 Train and Validate Agents

5-184

 Quadruped Robot Locomotion Using DDPG Agent

5-185

For examples on how to train a DDPG agent to walk a biped robot and a humanoid walker modeled in
Simscape™ Multibody™ see “Train Biped Robot to Walk Using Reinforcement Learning Agents” on
page 5-168 and “Train a Humanoid Walker” (Simscape Multibody), respectively.

References

[1] Heess, Nicolas, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
et al. ‘Emergence of Locomotion Behaviours in Rich Environments’. ArXiv:1707.02286 [Cs], 10 July
2017. https://arxiv.org/abs/1707.02286.

[2] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. ‘Continuous Control with Deep Reinforcement Learning’.
ArXiv:1509.02971 [Cs, Stat], 5 July 2019. https://arxiv.org/abs/1509.02971.

See Also
train

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2
• “Define Reward Signals” on page 2-7

5 Train and Validate Agents

5-186

https://arxiv.org/abs/1707.02286
https://arxiv.org/abs/1509.02971

Train DDPG Agent for PMSM Control
This example demonstrates speed control of a permanent magnet synchronous motor (PMSM) using a
deep deterministic policy gradient (DDPG) agent.

The goal of this example is to show that you can use reinforcement learning as an alternative to linear
controllers, such as PID controllers, in speed control of PMSM systems. Outside their regions of
linearity, linear controllers often do not produce good tracking performance. In such cases,
reinforcement learning provides a nonlinear control alternative.

Load the parameters for this example.

sim_data

Open the Simulink model.

mdl = 'mcb_pmsm_foc_sim_RL';
open_system(mdl)

In a linear control version of this example, you can use PI controllers in both the speed and current
control loops. An outer-loop PI controller can control the speed while two inner-loop PI controllers
can control the d-axis and q-axis currents. The overall goal is to track the reference speeds in the
Speed_Ref signal. This example uses a reinforcement learning agent to control the currents in the
inner control loop while a PI controller controls the outer loop.

In this simulation, the reference speeds are represented by the speed_ref_rpm signal, which is the
Speed_Ref signal expressed in rpm units.

Create Environment Interface

The environment in this example consists of the PMSM system, excluding the inner-loop current
controller, which is the reinforcement learning agent. To view the interface between the
reinforcement learning agent and the environment, open the Closed Loop Control subsystem.

open_system('mcb_pmsm_foc_sim_RL/Current Control/Control_System/Closed Loop Control')

 Train DDPG Agent for PMSM Control

5-187

The Reinforcement Learning block contains an RL agent block, the creation of the observation vector,
and the reward calculation.

For this environment:

• The observations are the d-axis and q-axis current errors iderror and iqerror, and their time
derivatives and integrals.

• The actions from the agent are the voltages vd_rl and vq_rl.
• The sample time of the agent is 2e-4 seconds. The inner-loop control occurs at a different sample

time than the outer loop.
• The reward at each time step is:

rt = − Q1 * iderror
2 + Q2 * iqerror

2 + R *∑
j

u j
t − 1

2

Here, Q1 = Q2 = 0 . 1, and R = 0 . 05 are constants, iderror is the d-axis current error, iqerror is the q-
axis current error, and u j

t − 1 are the actions from the previous time step.

Create the observation and action specifications for the environment. For information on creating
continuous specifications, see rlNumericSpec.

% Create observation specifications.
numObservations = 6;
observationInfo = rlNumericSpec([numObservations 1]);
observationInfo.Name = 'observations';
observationInfo.Description = 'Information on error and reference signal';

% Create action specifications.
numActions = 2;
actionInfo = rlNumericSpec([numActions 1]);
actionInfo.Name = 'vqdRef';

Create the Simulink environment interface using the observation and action specifications. For more
information on Simulink environments, see rlSimulinkEnv.

5 Train and Validate Agents

5-188

agentblk = 'mcb_pmsm_foc_sim_RL/Current Control/Control_System/Closed Loop Control/Reinforcement Learning/RL Agent';
env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

Provide a reset function for this environment using the ResetFcn parameter. During training, the
function resetPMSM randomly initializes the final values of step reference speeds in the SpeedRef
block between 1119 rpm (0.3 pu), 1492 rpm (0.4 pu) and 1865 rpm (0.5 pu) at the beginning of each
episode.

env.ResetFcn = @resetPMSM;

Create Agent

The agent used in this example is a deep deterministic policy gradient (DDPG) agent. A DDPG agent
approximates the long-term reward given the observations and actions using a critic value function.
For more information on DDPG agents, see “Deep Deterministic Policy Gradient Agents” on page 3-
17.

To create the critic, first create a deep neural network with two inputs (the observation and action)
and one output. For more information on creating a neural network value function representation, see
“Create Policy and Value Function Representations” on page 4-2.

rng(0) % fix the random seed

statePath = [featureInputLayer(numObservations,'Normalization','none','Name','State')
 fullyConnectedLayer(64,'Name','fc1')];
actionPath = [featureInputLayer(numActions, 'Normalization', 'none', 'Name','Action')
 fullyConnectedLayer(64, 'Name','fc2')];
commonPath = [additionLayer(2,'Name','add')
 reluLayer('Name','relu2')
 fullyConnectedLayer(32, 'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(16, 'Name','fc4')
 fullyConnectedLayer(1, 'Name','CriticOutput')];
criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);
criticNetwork = connectLayers(criticNetwork,'fc1','add/in1');
criticNetwork = connectLayers(criticNetwork,'fc2','add/in2');

Create the critic representation using the specified neural network and options. You must also specify
the action and observation specification for the critic. For more information, see
rlQValueRepresentation.

criticOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
 'Observation',{'State'},'Action',{'Action'},criticOptions);

A DDPG agent decides which action to take given the observations using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action). Construct the actor in a similar manner to the critic. For more information, see
rlDeterministicActorRepresentation.

actorNetwork = [featureInputLayer(numObservations,'Normalization','none','Name','State')
 fullyConnectedLayer(64, 'Name','actorFC1')
 tanhLayer('Name','tanh1')
 fullyConnectedLayer(32, 'Name','actorFC2')

 Train DDPG Agent for PMSM Control

5-189

 tanhLayer('Name','tanh2')
 fullyConnectedLayer(numActions,'Name','Action')
 tanhLayer('Name','tanh3')];
actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
 'Observation',{'State'},'Action',{'tanh3'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using rlDDPGAgentOptions. The
agent trains from an experience buffer of maximum capacity 1e6 by randomly selecting mini-batches
of size 512. The discount factor of 0.9995 favors long-term rewards. DDPG agents maintain time-
delayed copies of the actor and critic networks known as targets. The target networks are updated
every 20 agent steps during training.

Ts_agent = 2e-04;
agentOptions = rlDDPGAgentOptions("SampleTime",Ts_agent, ...
 "DiscountFactor", .9995, ...
 "ExperienceBufferLength",1e6, ...
 "MiniBatchSize",512, ...
 "TargetUpdateFrequency",20);

During training, the agent explores the action space using the “Noise Model”. Set the noise options
using the NoiseOptions field. The noise variance decays at the rate of 1e-6, which favors
exploration towards the beginning of training and exploitation in later stages.

agentOptions.NoiseOptions.MeanAttractionConstant = 0.5;
agentOptions.NoiseOptions.Variance = 0.15;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-6;
agentOptions.NoiseOptions.VarianceMin = 0.01;

Create the agent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

To train the agent, first specify the training options using rlTrainingOptions. For this example,
use the following options:

• Run each training for at most 2000 episodes, with each episode lasting at most ceil(T/
Ts_agent) time steps.

• Stop training when the agent receives an average cumulative reward greater than -80 over 100
consecutive episodes. At this point, the agent can track the reference speeds.

T = 1;
maxepisodes = 2000;
maxsteps = ceil(T/Ts_agent);
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-80,...
 'ScoreAveragingWindowLength',100);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

5 Train and Validate Agents

5-190

During training, only train the reinforcement learning agent for a single reference speed by setting
testReferences to 0.

doTraining = false;
if doTraining
 % Turn off test references during training.
 testReferences = 0;
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agents for the example.
 load('rlPMSMAgent.mat')
end

A snapshot of training progress is shown in the following figure. You can expect different results due
to randomness in the training process.

Simulate Agent

To validate the performance of the trained agent, simulate the model. To simulate the model with
different reference speeds, adjust the final values of the step references under the
mcb_pmsm_foc_sim_RL/TestRef subsystem.

For this simulation, enable the test reference step signals by setting testReferences to 1.

testReferences = 1;
sim(mdl);

 Train DDPG Agent for PMSM Control

5-191

In this simulation, the reference speed steps through values of 1119 rpm (0.3 per-unit), 3357 rpm (0.9
pu) and 2611 rpm (0.7 pu) with steps times of 0.1, 2 and 4 seconds respectively. The PI and
reinforcement learning controllers track the reference signal changes within 0.5-0.8 seconds.

The reinforcement learning controller was trained to track the reference speed of 1119 rpm (0.3 pu)
but is able to generalize well across other speeds.

See Also

5 Train and Validate Agents

5-192

Imitate MPC Controller for Lane Keeping Assist
This example shows how to train, validate, and test a deep neural network that imitates the behavior
of a model predictive controller for an automotive lane keeping assist system. In the example, you
also compare the behavior of the deep neural network with that of the original controller.

Model predictive control (MPC) solves a constrained quadratic-programming (QP) optimization
problem in real time based on the current state of the plant. Because MPC solves its optimization
problem in an open-loop fashion, you can potentially replace the controller with a deep neural
network. Evaluating a deep neural network is more computationally efficient than solving a QP
problem in real time.

If the training of the network sufficiently traverses the state-space for the application, you can create
a reasonable approximation of the controller behavior. You can then deploy the network for your
control application. You can also use the network as a warm starting point for training the actor
network of a reinforcement learning agent. For an example, see “Train DDPG Agent with Pretrained
Actor Network” on page 5-201.

Design MPC Controller

Design an MPC controller for lane keeping assist. To do so, first create a dynamic model for the
vehicle.

[sys,Vx] = createModelForMPCImLKA;

Create and design the MPC controller object mpcobj. Also, create an mpcstate object for setting the
initial controller state. For details on the controller design, type edit createMPCobjImLKA.

[mpcobj,initialState] = createMPCobjImLKA(sys);

For more information on designing model predictive controllers for lane keeping assist applications,
see “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control Toolbox)
and “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox).

Prepare Input Data

Load the input data from InputDataFileImLKA.mat. The columns of the data set follow:

1 Lateral velocity Vy

2 Yaw angle rate r
3 Lateral deviation e1

4 Relative yaw angle e2

5 Previous steering angle (control variable) u
6 Measured disturbance (road yaw rate: longitudinal velocity * curvature (ρ))
7 Cost function value
8 MPC iterations
9 Steering angle computed by MPC controller: u*

The data in InputDataFileImLKA.mat was created by computing the MPC control action for
randomly generated states, previous control actions, and measured disturbances. To generate your
own training data, use the collectDataImLKA function.

 Imitate MPC Controller for Lane Keeping Assist

5-193

Load the input data.

dataStruct = load('InputDataFileImLKA.mat');
data = dataStruct.Data;

Divide the input data into training, validation, and testing data. First, determine the number of
validation data rows based on a given percentage.

totalRows = size(data,1);
validationSplitPercent = 0.1;
numValidationDataRows = floor(validationSplitPercent*totalRows);

Determine the number of test data rows based on a given percentage.

testSplitPercent = 0.05;
numTestDataRows = floor(testSplitPercent*totalRows);

Randomly extract validation and testing data from the input data set. To do so, first randomly extract
enough rows for both data sets.

randomIdx = randperm(totalRows,numValidationDataRows + numTestDataRows);
randomData = data(randomIdx,:);

Divide the random data into validation and testing data.

validationData = randomData(1:numValidationDataRows,:);
testData = randomData(numValidationDataRows + 1:end,:);

Extract the remaining rows as training data.

trainDataIdx = setdiff(1:totalRows,randomIdx);
trainData = data(trainDataIdx,:);

Randomize the training data.

numTrainDataRows = size(trainData,1);
shuffleIdx = randperm(numTrainDataRows);
shuffledTrainData = trainData(shuffleIdx,:);

Reshape the training and validation data into 4-D matrices for use with trainNetwork.

numObservations = 6;
numActions = 1;

trainInput = shuffledTrainData(:,1:6);
trainOutput = shuffledTrainData(:,9);

validationInput = validationData(:,1:6);
validationOutput = validationData(:,9);
validationCellArray = {validationInput,validationOutput};

Reshape the testing data for use with predict.

testDataInput = testData(:,1:6);
testDataOutput = testData(:,9);

Create Deep Neural Network

The deep neural network architecture uses the following layers.

5 Train and Validate Agents

5-194

• imageInputLayer is the input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-1.04,1.04], implies that the steering angle is

constrained to be [-60,60] degrees.
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the MPC controller after training.

imitateMPCNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','InputLayer')
 fullyConnectedLayer(45,'Name','Fc1')
 reluLayer('Name','Relu1')
 fullyConnectedLayer(45,'Name','Fc2')
 reluLayer('Name','Relu2')
 fullyConnectedLayer(45,'Name','Fc3')
 reluLayer('Name','Relu3')
 fullyConnectedLayer(numActions,'Name','OutputLayer')
 tanhLayer('Name','Tanh1')
 scalingLayer('Name','Scale1','Scale',1.04)
 regressionLayer('Name','RegressionOutput')
];

Plot the network.

plot(layerGraph(imitateMPCNetwork))

 Imitate MPC Controller for Lane Keeping Assist

5-195

Train Deep Neural Network

Specify training options.

options = trainingOptions('adam', ...
 'Verbose',false, ...
 'Plots','training-progress', ...
 'Shuffle','every-epoch', ...
 'MaxEpochs', 30, ...
 'MiniBatchSize',512, ...
 'ValidationData',validationCellArray, ...
 'InitialLearnRate',1e-3, ...
 'GradientThresholdMethod','absolute-value', ...
 'ExecutionEnvironment','cpu', ...
 'GradientThreshold',10, ...
 'Epsilon',1e-8);

Train the deep neural network. To view detailed training information in the Command Window, set
the 'Verbose' training option to true.

imitateMPCNetObj = trainNetwork(trainInput,trainOutput,imitateMPCNetwork,options);

Training of the deep neural network stops after the final iteration.

The training and validation loss are nearly the same for each mini-batch, which indicates that the
trained network does not overfit.

5 Train and Validate Agents

5-196

Test Trained Network

Check that the trained deep neural network returns steering angles similar to the MPC controller
control actions given the test input data. Compute the network output using the predict function.

predictedTestDataOutput = predict(imitateMPCNetObj,testDataInput);

Calculate the root mean squared error (RMSE) between the network output and the testing data.

testRMSE = sqrt(mean((testDataOutput - predictedTestDataOutput).^2));
fprintf('Test Data RMSE = %d\n', testRMSE);

Test Data RMSE = 3.200035e-02

The small RMSE value indicates that the network outputs closely reproduce the MPC controller
outputs.

Compare Trained Network with MPC Controller

To compare the performance of the MPC controller and the trained deep neural network, run closed-
loop simulations using the vehicle plant model.

Generate random initial conditions for the vehicle that are not part of the original input data set, with
values selected from the following ranges:

1 Lateral velocity Vy — Range (-2,2) m/s
2 Yaw angle rate r — Range (-60,60) deg/s
3 Lateral deviation e1 — Range (-1,1) m
4 Relative yaw angle e2 — Range (-45,45) deg
5 Last steering angle (control variable) u — Range (-60,60) deg
6 Measured disturbance (road yaw rate, defined as longitudinal velocity * curvature (ρ)) — Range

(-0.01,0.01) with a minimum road radius of 100 m

rng(5e7)
[x0,u0,rho] = generateRandomDataImLKA(data);

Set the initial plant state and control action in the mpcstate object.

initialState.Plant = x0;
initialState.LastMove = u0;

Extract the sample time from the MPC controller. Also, set the number of simulation steps.

Ts = mpcobj.Ts;
Tsteps = 30;

Obtain the A and B state-space matrices for the vehicle model.

A = sys.A;
B = sys.B;

Initialize the state and input trajectories for the MPC controller simulation.

xHistoryMPC = repmat(x0',Tsteps+1,1);
uHistoryMPC = repmat(u0',Tsteps,1);

 Imitate MPC Controller for Lane Keeping Assist

5-197

Run a closed-loop simulation of the MPC controller and the plant using the mpcmove function.

for k = 1:Tsteps
 % Obtain plant output measurements, which correspond to the plant outputs.
 xk = xHistoryMPC(k,:)';
 % Compute the next cotnrol action using the MPC controller.
 uk = mpcmove(mpcobj,initialState,xk,zeros(1,4),Vx*rho);
 % Store the control action.
 uHistoryMPC(k,:) = uk;
 % Update the state using the control action.
 xHistoryMPC(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Initialize the state and input trajectories for the deep neural network simulation.

xHistoryDNN = repmat(x0',Tsteps+1,1);
uHistoryDNN = repmat(u0',Tsteps,1);
lastMV = u0;

Run a closed-loop simulation of the trained network and the plant. The neuralnetLKAmove function
computes the deep neural network output using the predict function.

for k = 1:Tsteps
 % Obtain plant output measurements, which correspond to the plant outputs.
 xk = xHistoryDNN(k,:)';
 % Predict the next move using the trained deep neural network.
 uk = neuralnetLKAmove(imitateMPCNetObj,xk,lastMV,rho);
 % Store the control action and update the last MV for the next step.
 uHistoryDNN(k,:) = uk;
 lastMV = uk;
 % Update the state using the control action.
 xHistoryDNN(k+1,:) = (A*xk + B*[uk;Vx*rho])';
end

Plot the results, and compare the MPC controller and trained deep neural network (DNN)
trajectories.

plotValidationResultsImLKA(Ts,xHistoryDNN,uHistoryDNN,xHistoryMPC,uHistoryMPC);

5 Train and Validate Agents

5-198

 Imitate MPC Controller for Lane Keeping Assist

5-199

The deep neural network successfully imitates the behavior of the MPC controller. The vehicle state
and control action trajectories for the controller and the deep neural network closely align.

See Also
mpcmove | predict | trainNetwork

More About
• “Lane Keeping Assist System Using Model Predictive Control” (Model Predictive Control

Toolbox)
• “Lane Keeping Assist with Lane Detection” (Model Predictive Control Toolbox)

5 Train and Validate Agents

5-200

Train DDPG Agent with Pretrained Actor Network
This example shows how to train a deep deterministic policy gradient (DDPG) agent for lane keeping
assist (LKA) in Simulink. To make training more efficient, the actor of the DDPG agent is initialized
with a deep neural network that was previously trained using supervised learning. This actor trained
is trained in the “Imitate MPC Controller for Lane Keeping Assist” on page 5-193 example.

For more information on DDPG agents, see Deep Deterministic Policy Gradient Agents.

Simulink Model

The training goal for the lane-keeping application is to keep the ego vehicle traveling along the
centerline of the a lane by adjusting the front steering angle. This example uses the same ego vehicle
dynamics and sensor dynamics as the “Train DQN Agent for Lane Keeping Assist” on page 5-134
example.

m = 1575; % total vehicle mass (kg)
Iz = 2875; % yaw moment of inertia (mNs^2)
lf = 1.2; % longitudinal distance from center of gravity to front tires (m)
lr = 1.6; % longitudinal distance from center of gravity to rear tires (m)
Cf = 19000; % cornering stiffness of front tires (N/rad)
Cr = 33000; % cornering stiffness of rear tires (N/rad)
Vx = 15; % longitudinal velocity (m/s)

Define the sample time, Ts, and simulation duration, T, in seconds.

Ts = 0.1;
T = 15;

The output of the LKA system is the front steering angle of the ego vehicle. Considering the physical
limitations of the ego vehicle, constrain its steering angle to the range [-60,60] degrees. Specify the
constrains in radians.

u_min = -1.04;
u_max = 1.04;

Define the curvature of the road as a constant 0.001(m−1).

rho = 0.001;

Set initial values for the lateral deviation (e1_initial) and the relative yaw angle (e2_initial).
During training, these initial conditions are set to random values for each training episode.

e1_initial = 0.2;
e2_initial = -0.1;

Open the model.

mdl = 'rlActorLKAMdl';
open_system(mdl)

 Train DDPG Agent with Pretrained Actor Network

5-201

https://www.mathworks.com/help/reinforcement-learning/ug/ddpg-agents.html

Define the path to the RL Agent block within the model.

agentblk = [mdl '/RL Agent'];

Create Environment

Create a reinforcement learning environment interface for the ego vehicle. To do so, first define the
observation and action specifications. These observations and actions are the same as the features for
supervised learning used in “Imitate MPC Controller for Lane Keeping Assist” on page 5-193.

The six observations for the environment are the lateral velocity vy, yaw rate ψ̇, lateral deviation e1,
relative yaw angle e2, steering angle at previous step u0, and curvature ρ.

observationInfo = rlNumericSpec([6 1],...
 'LowerLimit',-inf*ones(6,1),'UpperLimit',inf*ones(6,1));
observationInfo.Name = 'observations';

The action for the environment is the front steering angle. Specify the steering angle constraints
when creating the action specification object.

actionInfo = rlNumericSpec([1 1],'LowerLimit',u_min,'UpperLimit',u_max);
actionInfo.Name = 'steering';

In the model, the Signal Processing for LKA block creates the observation vector signal, computes the
reward function, and calculates the stop condition signal.

The reward rt, provided at every time step t, is as follows, where u is the control input from the
previous time step t − 1.

rt = − (10e1
2 + 5e2

2 + 2u2 + 5ė1
2 + 5ė2

2)

The simulation stops when e1 > 1.

Create the reinforcement learning environment.

5 Train and Validate Agents

5-202

env = rlSimulinkEnv(mdl,agentblk,observationInfo,actionInfo);

To define the initial condition for lateral deviation and relative yaw angle, specify an environment
reset function using an anonymous function handle. The localResetFcn function, which is defined
at the end of the example, sets the initial lateral deviation and relative yaw angle to random values.

env.ResetFcn = @(in)localResetFcn(in);

Fix the random generator seed for reproducibility.

rng(0)

Create DDPG Agent

A DDPG agent approximates the long-term reward given observations and actions using a critic value
function representation. To create the critic, first create a deep neural network with two inputs, the
state and action, and one output. For more information on creating a deep neural network value
function representation, see “Create Policy and Value Function Representations” on page 4-2.

critic = createLaneKeepingCritic(observationInfo,actionInfo);

A DDPG agent decides which action to take given observations using an actor representation. To
create the actor, first create a deep neural network with one input (the observation) and one output
(the action).

[actor,actorOptions] = createLaneKeepingActor(observationInfo,actionInfo);

These initial actor and critic networks have random initial parameter values.

To create the DDPG agent, first specify the DDPG agent options.

agentOptions = rlDDPGAgentOptions(...
 'SampleTime',Ts,...
 'TargetSmoothFactor',1e-3,...
 'ExperienceBufferLength',1e6,...
 'DiscountFactor',0.99,...
 'MiniBatchSize',64 ...
);
agentOptions.NoiseOptions.Variance = 0.3;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

Create the DDPG agent using the specified actor representation, critic representation, and agent
options. For more information, see rlDDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

Train Agent

As a baseline, train the agent with an actor that has random initial parameters. To train the agent,
first specify the training options. For this example, use the following options.

• Run training for at most 50000 episodes, with each episode lasting at most 150 time steps.
• Display the training progress in the Episode Manager dialog box.
• Stop training when the episode reward reaches –1.
• Save a copy of the agent for each episode where the cumulative reward is greater than –2.5.

For more information, see rlTrainingOptions.

 Train DDPG Agent with Pretrained Actor Network

5-203

maxepisodes = 50000;
maxsteps = T/Ts;
trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes,...
 'MaxStepsPerEpisode',maxsteps,...
 'Verbose',false,...
 'Plots','training-progress',...
 'StopTrainingCriteria','EpisodeReward',...
 'StopTrainingValue',-1,...
 'SaveAgentCriteria','EpisodeReward',...
 'SaveAgentValue',-2.5);

Train the agent using the train function. Training is a computationally intensive process that takes
several hours to complete. To save time while running this example, load a pretrained agent by
setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agent for the example.
 load('ddpgFromScratch.mat');
end

5 Train and Validate Agents

5-204

Train Agent with Pretrained Actor

You can set the actor network of your agent to a deep neural network that has been previously
trained. For this example, use the deep neural network from the “Imitate MPC Controller for Lane
Keeping Assist” on page 5-193 example. This network was trained to imitate a model predictive
controller using supervised learning.

Load the pretrained actor network.

load('imitateMPCNetActorObj.mat','imitateMPCNetObj');

Create an actor representation using the pretrained actor.

supervisedActor = rlDeterministicActorRepresentation(imitateMPCNetObj,observationInfo,actionInfo, ...
'Observation',imitateMPCNetObj.InputNames,'Action',{'Scale1'},actorOptions);

Check that the network used by supervisedActor is the same one that was loaded. To do so,
evaluate both the network and the agent using the same random input observation.

testData = rand(6,1);

Evaluate the deep neural network.

predictImNN = predict(imitateMPCNetObj,testData');

Evaluate the actor.

evaluateRLRep = getAction(supervisedActor,{testData});

Compare the results.

error = evaluateRLRep{:} - predictImNN

error = single
 0

Create a DDPG agent using the pretrained actor.

agent = rlDDPGAgent(supervisedActor,critic,agentOptions);

Reduce the maximum number of training episodes and train the agent using the train function. To
save time while running this example, load a pretrained agent by setting doTraining to false. To
train the agent yourself, set doTraining to true.

trainingOpts.MaxEpisodes = 5000;
doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainingOpts);
else
 % Load pretrained agent for the example.
 load('ddpgFromPretrained.mat');
end

 Train DDPG Agent with Pretrained Actor Network

5-205

By using the pretrained actor network, the training of the DDPG agent is more efficient. Both the
total training time and the total number of training steps have improved by approximately 20%. Also,
the number of episodes for the training to approach the neighborhood of the optimal result decreased
from approximately 4500 to approximately 3500.

Simulate DDPG Agent

To validate the performance of the trained agent, uncomment the following two lines and simulate it
within the environment. For more information on agent simulation, see rlSimulationOptions and
sim.

% simOptions = rlSimulationOptions('MaxSteps',maxsteps);
% experience = sim(env,agent,simOptions);

To check the performance of the trained agent within the Simulink model, simulate the model using
the previously defined initial conditions (e1_initial = 0.2 and e2_initial = -0.1).

sim(mdl)

As shown below, the lateral error (middle plot) and relative yaw angle (bottom plot) are both driven to
zero. The vehicle starts with a lateral deviation from the centerline (0.2 m) and a nonzero yaw angle
error (-0.1 rad). The lane-keeping controller makes the ego vehicle travel along the centerline after
around two seconds. The steering angle (top plot) shows that the controller reaches steady state after
about two seconds.

5 Train and Validate Agents

5-206

 Train DDPG Agent with Pretrained Actor Network

5-207

Close the Simulink model.

bdclose(mdl)

Local Functions

function in = localResetFcn(in)
% Set random value for lateral deviation.
in = setVariable(in,'e1_initial', 0.5*(-1+2*rand));

% Set random value for relative yaw angle.
in = setVariable(in,'e2_initial', 0.1*(-1+2*rand));
end

function agent = loadPretrainedParams(agent,actorParams,criticParams)
% Set actor parameters.
actor = getActor(agent);
pretrainedActor = setLearnableParameters(actor,actorParams);

% Set critic parameters.
critic = getCritic(agent);
pretrainedCritic = setLearnableParameters(critic,criticParams);

% Set actor and critic representations in the agent.
agent = setActor(agent,pretrainedActor);
agent = setCritic(agent,pretrainedCritic);
end

See Also
rlDDPGAgent | train

More About
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-193
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Deep Deterministic Policy Gradient Agents” on page 3-17

5 Train and Validate Agents

5-208

Imitate Nonlinear MPC Controller for Flying Robot
This example shows how to train, validate, and test a deep neural network (DNN) that imitates the
behavior of a nonlinear model predictive controller for a flying robot. It then compares the behavior
of the deep neural network with that of the original controller. To train the deep neural network, this
example uses the data aggregation (DAgger) approach as in [1].

Nonlinear model predictive control (NLMPC) solves a constrained nonlinear optimization problem in
real time based on the current state of the plant. Since NLMPC solves its optimization problem in an
open-loop fashion, there is the potential to replace the controller with a trained DNN. Doing so is an
appealing option, since evaluating a DNN can be more computationally efficient than solving a
nonlinear optimization problem in real-time.

If the training of the DNN creates a reasonable approximation of the controller behavior, you can
then deploy the network for your control application. You can also use the network as a warm starting
point for training the actor network of a reinforcement learning agent. For an example that does so
with a DNN trained for an MPC application, see “Train DDPG Agent with Pretrained Actor Network”
on page 5-201.

Design Nonlinear MPC Controller

Design a nonlinear MPC controller for a flying robot. The dynamics for the flying robot are the same
as in “Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC” (Model Predictive
Control Toolbox) example. First, define the limit for the control variables, which are the robot thrust
levels.

umax = 3;

Create the nonlinear MPC controller object nlobj. To reduce command-window output, disable the
MPC update messages.

mpcverbosity off;
nlobj = createMPCobjImFlyingRobot(umax);

Prepare Input Data

Load the input data from DAggerInputDataFileImFlyingRobot.mat. The columns of the data set
contain:

1 x is the position of the robot along the x-axis.
2 y is the position of the robot along the y-axis.
3 θ is the orientation of the robot.
4 ẋ is the velocity of the robot along the x-axis.
5 ẏ is the velocity of the robot along the y-axis.
6 θ̇ is the angular velocity of the robot.
7 ul is the thrust on the left side of the flying robot
8 ur is the thrust on the right side of the flying robot
9 ul* is the thrust on the left side computed by NLMPC

10 ur* is the thrust on the right side computed by NLMPC

 Imitate Nonlinear MPC Controller for Flying Robot

5-209

The data in DAggerInputDataFileImFlyingRobot.mat is created by computing the NLMPC
control action for randomly generated states (x, y, θ, ẋ, ẏ, θ̇), and previous control actions (ul, ur). To
generate your own training data, use the collectDataImFlyingRobot function.

Load the input data.

fileName = 'DAggerInputDataFileImFlyingRobot.mat';
DAggerData = load(fileName);
data = DAggerData.data;
existingData = data;
numCol = size(data,2);

Create Deep Neural Network

The deep neural network architecture uses the following types of layers.

• imageInputLayer is the input layer of the neural network.
• fullyConnectedLayer multiplies the input by a weight matrix and then adds a bias vector.
• reluLayer is the activation function of the neural network.
• tanhLayer constrains the value to the range to [-1,1].
• scalingLayer scales the value to the range to [-3,3].
• regressionLayer defines the loss function of the neural network.

Create the deep neural network that will imitate the NLMPC controller after training.

numObservations = numCol-2;
numActions = 2;
hiddenLayerSize = 256;

imitateMPCNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','observation')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc3')
 reluLayer('Name','relu3')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc4')
 reluLayer('Name','relu4')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc5')
 reluLayer('Name','relu5')
 fullyConnectedLayer(hiddenLayerSize,'Name','fc6')
 reluLayer('Name','relu6')
 fullyConnectedLayer(numActions,'Name','fcLast')
 tanhLayer('Name','tanhLast')
 scalingLayer('Name','ActorScaling','Scale',umax)
 regressionLayer('Name','routput')];

Plot the network.

plot(layerGraph(imitateMPCNetwork))

5 Train and Validate Agents

5-210

Behavior Cloning Approach

One approach to learning an expert policy using supervised learning is the behavior cloning method.
This method divides the expert demonstrations (NLMPC control actions in response to observations)
into state-action pairs and applies supervised learning to train the network.

Specify training options.

% intialize validation cell array
validationCellArray = {0,0};

options = trainingOptions('adam', ...
 'Verbose', false, ...
 'Plots', 'training-progress', ...
 'Shuffle', 'every-epoch', ...
 'MiniBatchSize', 512, ...
 'ValidationData', validationCellArray, ...
 'InitialLearnRate', 1e-3, ...
 'ExecutionEnvironment', 'cpu', ...
 'GradientThreshold', 10, ...
 'MaxEpochs', 40 ...
);

You can train the behavior cloning neural network by following below steps

1 Collect data using the collectDataImFlyingRobot function.
2 Train the behavior cloning network using the behaviorCloningTrainNetwork function.

 Imitate Nonlinear MPC Controller for Flying Robot

5-211

Training a DNN is a computationally intensive process. To save time, load a pretrained neural
network object.

load('behaviorCloningMPCImDNNObject.mat');
imitateMPCNetBehaviorCloningObj = behaviorCloningNNObj.imitateMPCNetObj;

The training of the DNN using behavior cloning reduces the gap between the DNN and NLMPC
performance. However, the behavior cloning neural network fails to imitate the behavior of the
NLMPC controller correctly on some randomly generated data.

Data Aggregation Approach

To improve the performance of the DNN, you can learn the policy using an interactive demonstrator
method. DAgger is an iterative method where the DNN is run in the closed-loop environment. The
expert, in this case the NLMPC controller, outputs actions based on the states visited by the DNN. In
this manner, more training data is aggregated and the DNN is retrained for improved performance.
For more information, see [1].

Train the deep neural network using the DAggerTrainNetwork function. It creates
DAggerImFlyingRobotDNNObj.mat file that contains the following information.

• DatasetPath: path where the dataset corresponding to each iteration is stored
• policyObjs: policies that were trained in each iteration
• finalData: total training data collected till final iteration
• finalPolicy: best policy among all the collected policies

5 Train and Validate Agents

5-212

First, create and initialize the parameters for training. Use the network trained using behavior
cloning (imitateMPCNetBehaviorCloningObj) as the starting point for the DAgger training.

[dataStruct,nlmpcStruct,tuningParamsStruct,neuralNetStruct] = loadDAggerParameters(existingData, ...
 numCol,nlobj,umax,options,imitateMPCNetBehaviorCloningObj);

To save time, load a pretrained neural network by setting doTraining to false. To train the DAgger
yourself, set doTraining to true.

doTraining = false;

if doTraining
 DAgger = DAggerTrainNetwork(nlmpcStruct,dataStruct,neuralNetStruct,tuningParamsStruct);
else
 load('DAggerImFlyingRobotDNNObj.mat');
end
DNN = DAgger.finalPolicy;

As an alternative, you can train the neural network with a modified policy update rule using the
DAggerModifiedTrainNetwork function. In this function, after every 20 training iterations, the
DNN is set to the most optimal configuration from the previous 20 iterations. To run this example
with a neural network object with the modified DAgger approach, use the
DAggerModifiedImFlyingRobotDNNObj.mat file.

Compare Trained DAgger Network with NLMPC Controller

To compare the performance of the NLMPC controller and the trained DNN, run closed-loop
simulations with the flying robot model.

Set initial condition for the states of the flying robot (x, y, θ, ẋ, ẏ, θ̇) and the control variables of flying
robot (ul, ur).

x0 = [-1.8200 0.5300 -2.3500 1.1700 -1.0400 0.3100]';
u0 = [-2.1800 -2.6200]';

Run a closed-loop simulation of the NLMPC controller.

% Duration
Tf = 15;
% Sample time
Ts = nlobj.Ts;
% Simulation steps
Tsteps = Tf/Ts+1;
% Run NLMPC in closed loop.
tic
[xHistoryMPC,uHistoryMPC] = simModelMPCImFlyingRobot(x0,u0,nlobj,Tf);
toc

Elapsed time is 67.867603 seconds.

Run a closed-loop simulation of the trained DAgger network.

tic
[xHistoryDNN,uHistoryDNN] = simModelDAggerImFlyingRobot(x0,u0,DNN,Ts,Tf);
toc

Elapsed time is 2.290211 seconds.

 Imitate Nonlinear MPC Controller for Flying Robot

5-213

Plot the results, and compare the NLMPC and trained DNN trajectories.

plotSimResultsImFlyingRobot(nlobj,xHistoryMPC,uHistoryMPC,xHistoryDNN,uHistoryDNN,umax,Tf)

5 Train and Validate Agents

5-214

The DAgger neural network successfully imitates the behavior of the NLMPC controller. The flying
robot states and control action trajectories for the controller and the DAgger deep neural network
closely align. The closed-loop simulation time for the DNN is significantly less than that of the
NLMPC controller.

Animate the Flying Robot with Trained DAgger Network

To validate the performance of the trained DNN, animate the flying robot with data from the DNN
closed-loop simulation. The flying robot lands at the origin successfully.

Lx = 5;
Ly = 5;
for ct = 1:Tsteps
 x = xHistoryDNN(ct,1);
 y = xHistoryDNN(ct,2);
 theta = xHistoryDNN(ct,3);
 tL = uHistoryDNN(ct,1);
 tR = uHistoryDNN(ct,2);
 rl.env.viz.plotFlyingRobot(x,y,theta,tL,tR,Lx,Ly);
 pause(0.05);
end

 Imitate Nonlinear MPC Controller for Flying Robot

5-215

% Turn on MPC messages
mpcverbosity on;

References

[1] Osa, Takayuki, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, and Jan
Peters. ‘An Algorithmic Perspective on Imitation Learning’. Foundations and Trends in Robotics 7, no.
1–2 (2018): 1–179. https://doi.org/10.1561/2300000053.

See Also
rlDDPGAgent | train

More About
• “Imitate MPC Controller for Lane Keeping Assist” on page 5-193
• “Train DQN Agent for Lane Keeping Assist” on page 5-134
• “Deep Deterministic Policy Gradient Agents” on page 3-17

5 Train and Validate Agents

5-216

https://doi.org/10.1561/2300000053

Tune PI Controller using Reinforcement Learning
This example shows how to tune a PI controller using the twin-delayed deep deterministic policy
gradient (TD3) reinforcement learning algorithm. The performance of the tuned controller is
compared with that of a controller tuned using the Control System Tuner app. Using the Control
System Tuner app to tune controllers in Simulink® requires Simulink Control Design™ software.

For relatively simple control tasks with a small number of tunable parameters, model-based tuning
techniques can get good results with a faster tuning process compared to model-free RL-based
methods. However, RL methods can be more suitable for highly nonlinear systems or adaptive
controller tuning.

To facilitate the controller comparison, both tuning methods use a linear quadratic Gaussian (LQG)
objective function.

This example uses a reinforcement learning (RL) agent to compute the gains for a PI controller. For
an example that replaces the PI controller with a neural network controller, see “Create Simulink
Environment and Train Agent” on page 1-19.

Environment Model

The environment model for this example is a water tank model. The goal of this control system is to
maintain the level of water in a tank to match a reference value.

open_system('watertankLQG')

The model includes process noise with variance E n2 t = 1.

To maintain the water level while minimizing control effort u, the controllers in this example use the
following LQG criterion.

J = lim
T ∞

E 1
T ∫0

T ref − y 2 t + 0 . 01u2 t dt

 Tune PI Controller using Reinforcement Learning

5-217

To simulate the controller in this model, you must specify the simulation time Tf and the controller
sample time Ts in seconds.

Ts = 0.1;
Tf = 10;

For more information about the water tank model, see “watertank Simulink Model” (Simulink Control
Design).

Tune PI Controller using Control System Tuner

To tune a controller in Simulink using Control System Tuner, you must specify the controller block
as a tuned block and define the goals for the tuning process. For more information on using Control
System Tuner, see “Tune a Control System Using Control System Tuner” (Simulink Control Design).

For this example, open the saved session ControlSystemTunerSession.mat using Control
System Tuner. This session specifies the PID Controller block in the watertankLQG model as a
tuned block and contains an LQG tuning goal.

controlSystemTuner("ControlSystemTunerSession")

To tune the controller, on the Tuning tab, click Tune.

The tuned proportional and integral gains are approximately 9.8 and 1e-6, respectively.

Kp_CST = 9.80199999804512;
Ki_CST = 1.00019996230706e-06;

Create Environment for Training Agent

To define the model for training the RL agent, modify the water tank model using the following steps.

1 Delete the PID Controller.
2 Insert an RL Agent block.
3 Create the observation vector ∫e dt e T where e = r − h, h is the height of the tank, and r is the

reference height. Connect the observation signal to the RL Agent block.
4 Define the reward function for the RL agent as the negative of the LQG cost , that is,

Reward = − ref − h 2 t + 0 . 01u2 t . The RL agent maximizes this reward, thus minimizing the
LQG cost.

The resulting model is rlwatertankPIDTune.slx.

mdl = 'rlwatertankPIDTune';
open_system(mdl)

5 Train and Validate Agents

5-218

Create the environment interface object. To do so, use the localCreatePIDEnv function defined at
the end of this example.

[env,obsInfo,actInfo] = localCreatePIDEnv(mdl);

Extract the observation and action dimensions for this environment.

numObservations = obsInfo.Dimension(1);
numActions = prod(actInfo.Dimension);

Fix the random generator seed for reproducibility.

rng(0)

Create TD3 Agent

Given observations, a TD3 agent decides which action to take using an actor representation. To
create the actor, first create a deep neural network with the observation input and the action output.
For more information, see rlDeterministicActorRepresentation.

You can model a PI controller as a neural network with one fully-connected layer with error and error
integral observations.

u = ∫e dt e * Ki Kp
T

Here:

• u is the output of the actor neural network.
• Kp and Ki are the absolute values of the neural network weights.

 Tune PI Controller using Reinforcement Learning

5-219

• e = r − h, h is the height of the tank, and r is the reference height.

Gradient descent optimization can drive the weights to negative values. To avoid negative weights,
replace normal fullyConnectedLayer with a fullyConnectedPILayer. This layer ensures that
the weights are positive by implementing the function Y = abs WEIGHTS * X. This layer is defined in
fullyConnectedPILayer.m.

initialGain = single([1e-3 2]);
actorNetwork = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedPILayer(initialGain, 'Action')];
actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
 'Observation',{'state'},'Action',{'Action'},actorOptions);

A TD3 agent approximates the long-term reward given observations and actions using two critic
value-function representations. To create the critics, first create a deep neural network with two
inputs, the observation and action, and one output. For more information on creating a deep neural
network value function representation, see “Create Policy and Value Function Representations” on
page 4-2.

To create the critics, use the localCreateCriticNetwork function defined at the end of this
example. Use the same network structure for both critic representations.

criticNetwork = localCreateCriticNetwork(numObservations,numActions);
criticOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);

critic1 = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation','state','Action','action',criticOpts);
critic2 = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
 'Observation','state','Action','action',criticOpts);
critic = [critic1 critic2];

Configure the agent using the following options.

• Set the agent to use the controller sample time Ts.
• Set the mini-batch size to 128 experience samples.
• Set the experience buffer length to 1e6.
• Set the exploration model and target policy smoothing model to use Gaussian noise with variance

of 0.1.

Specify the TD3 agent options using rlTD3AgentOptions.

agentOpts = rlTD3AgentOptions(...
 'SampleTime',Ts,...
 'MiniBatchSize',128, ...
 'ExperienceBufferLength',1e6);
agentOpts.ExplorationModel.Variance = 0.1;
agentOpts.TargetPolicySmoothModel.Variance = 0.1;

Create the TD3 agent using the specified actor representation, critic representation, and agent
options. For more information, see rlTD3AgentOptions.

agent = rlTD3Agent(actor,critic,agentOpts);

5 Train and Validate Agents

5-220

Train Agent

To train the agent, first specify the following training options.

• Run each training for at most 1000 episodes, with each episode lasting at most 100 time steps.
• Display the training progress in the Episode Manager (set the Plots option) and disable the

command-line display (set the Verbose option).
• Stop training when the agent receives an average cumulative reward greater than -355 over 100

consecutive episodes. At this point, the agent can control the level of water in the tank.

For more information, see rlTrainingOptions.

maxepisodes = 1000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',maxepisodes, ...
 'MaxStepsPerEpisode',maxsteps, ...
 'ScoreAveragingWindowLength',100, ...
 'Verbose',false, ...
 'Plots','training-progress',...
 'StopTrainingCriteria','AverageReward',...
 'StopTrainingValue',-355);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;

if doTraining
 % Train the agent.
 trainingStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('WaterTankPIDtd3.mat','agent')
end

 Tune PI Controller using Reinforcement Learning

5-221

Validate Trained Agent

Validate the learned agent against the model by simulation.

simOpts = rlSimulationOptions('MaxSteps',maxsteps);
experiences = sim(env,agent,simOpts);

The integral and proportional gains of the PI controller are the absolute weights of the actor
representation. To obtain the weights, first extract the learnable parameters from the actor.

actor = getActor(agent);
parameters = getLearnableParameters(actor);

Obtain the controller gains.

Ki = abs(parameters{1}(1))

Ki = single
 0.3958

Kp = abs(parameters{1}(2))

Kp = single
 8.0822

Apply the gains obtained from the RL agent to the original PI controller block and run a step-
response simulation.

5 Train and Validate Agents

5-222

mdlTest = 'watertankLQG';
open_system(mdlTest);
set_param([mdlTest '/PID Controller'],'P',num2str(Kp))
set_param([mdlTest '/PID Controller'],'I',num2str(Ki))
sim(mdlTest)

Extract the step response information, LQG cost, and stability margin for the simulation. To compute
the stability margin, use the localStabilityAnalysis function defined at the end of this example.

rlStep = simout;
rlCost = cost;
rlStabilityMargin = localStabilityAnalysis(mdlTest);

Apply the gains obtained using Control System Tuner to the original PI controller block and run a
step-response simulation.

set_param([mdlTest '/PID Controller'],'P',num2str(Kp_CST))
set_param([mdlTest '/PID Controller'],'I',num2str(Ki_CST))
sim(mdlTest)
cstStep = simout;
cstCost = cost;
cstStabilityMargin = localStabilityAnalysis(mdlTest);

Compare Controller Performance

Plot the step response for each system.

figure
plot(cstStep)
hold on
plot(rlStep)
grid on
legend('Control System Tuner','RL','Location','southeast')
title('Step Response')

 Tune PI Controller using Reinforcement Learning

5-223

Analyze the step response for both simulations.

rlStepInfo = stepinfo(rlStep.Data,rlStep.Time);
cstStepInfo = stepinfo(cstStep.Data,cstStep.Time);
stepInfoTable = struct2table([cstStepInfo rlStepInfo]);
stepInfoTable = removevars(stepInfoTable,{...
 'SettlingMin','SettlingMax','Undershoot','PeakTime'});
stepInfoTable.Properties.RowNames = {'Control System Tuner','RL'};
stepInfoTable

stepInfoTable=2×4 table
 RiseTime SettlingTime Overshoot Peak
 ________ ____________ _________ ______

 Control System Tuner 0.77322 1.3594 0.33125 9.9023
 RL 0.97617 1.7408 0.40451 10.077

Analyze the stability for both simulations.

stabilityMarginTable = struct2table([cstStabilityMargin rlStabilityMargin]);
stabilityMarginTable = removevars(stabilityMarginTable,{...
 'GMFrequency','PMFrequency','DelayMargin','DMFrequency'});
stabilityMarginTable.Properties.RowNames = {'Control System Tuner','RL'};
stabilityMarginTable

stabilityMarginTable=2×3 table
 GainMargin PhaseMargin Stable

5 Train and Validate Agents

5-224

 __________ ___________ ______

 Control System Tuner 8.1616 84.122 true
 RL 9.9226 84.241 true

Compare the cumulative LQG cost for the two controllers. The RL-tuned controller produces a slightly
more optimal solution.

rlCumulativeCost = sum(rlCost.Data)

rlCumulativeCost = -375.9135

cstCumulativeCost = sum(cstCost.Data)

cstCumulativeCost = -376.9373

Both controllers produce stable responses, with the controller tuned using Control System Tuner
producing a faster response. However, the RL tuning method produces a higher gain margin and a
more optimal solution.

Local Functions

Function to create the water tank RL environment.

function [env,obsInfo,actInfo] = localCreatePIDEnv(mdl)

% Define the observation specification obsInfo and action specification actInfo.
obsInfo = rlNumericSpec([2 1]);
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error and error';

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'PID output';

% Build the environment interface object.
env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],obsInfo,actInfo);

% Set a cutom reset function that randomizes the reference values for the model.
env.ResetFcn = @(in)localResetFcn(in,mdl);
end

Function to randomize the reference signal and initial height of the water tank at the beginning of
each episode.

function in = localResetFcn(in,mdl)

% randomize reference signal
blk = sprintf([mdl '/Desired \nWater Level']);
hRef = 10 + 4*(rand-0.5);
in = setBlockParameter(in,blk,'Value',num2str(hRef));

% randomize initial height
hInit = 0;
blk = [mdl '/Water-Tank System/H'];
in = setBlockParameter(in,blk,'InitialCondition',num2str(hInit));

end

 Tune PI Controller using Reinforcement Learning

5-225

Function to linearize and compute stability margins of the SISO water tank system.

function margin = localStabilityAnalysis(mdl)

io(1) = linio([mdl '/Sum1'],1,'input');
io(2) = linio([mdl '/Water-Tank System'],1,'openoutput');
op = operpoint(mdl);
op.Time = 5;
linsys = linearize(mdl,io,op);

margin = allmargin(linsys);
end

Function to create critic network.

function criticNetwork = localCreateCriticNetwork(numObservations,numActions)
statePath = [
 featureInputLayer(numObservations,'Normalization','none','Name','state')
 fullyConnectedLayer(32,'Name','fc1')];
actionPath = [
 featureInputLayer(numActions,'Normalization','none','Name','action')
 fullyConnectedLayer(32,'Name','fc2')];
commonPath = [
 concatenationLayer(1,2,'Name','concat')
 reluLayer('Name','reluBody1')
 fullyConnectedLayer(32,'Name','fcBody')
 reluLayer('Name','reluBody2')
 fullyConnectedLayer(1,'Name','qvalue')];

criticNetwork = layerGraph();
criticNetwork = addLayers(criticNetwork,statePath);
criticNetwork = addLayers(criticNetwork,actionPath);
criticNetwork = addLayers(criticNetwork,commonPath);

criticNetwork = connectLayers(criticNetwork,'fc1','concat/in1');
criticNetwork = connectLayers(criticNetwork,'fc2','concat/in2');
end

See Also
rlTD3Agent | train

More About
• “Twin-Delayed Deep Deterministic Policy Gradient Agents” on page 3-21

5 Train and Validate Agents

5-226

Train Custom LQR Agent
This example shows how to train a custom linear quadratic regulation (LQR) agent to control a
discrete-time linear system modeled in MATLAB®.

Create Linear System Environment

The reinforcement learning environment for this example is a discrete-time linear system. The
dynamics for the system are given by

xt + 1 = Axt + But

The feedback control law is

ut = − Kxt

The control objective is to minimize the quadratic cost: J = ∑t = 0
∞ xt′Qxt + ut′Rut .

In this example, the system matrices are

A =
1 . 05 0 . 05 0 . 05
0 . 05 1 . 05 0 . 05

0 0 . 05 1 . 05

B =
0 . 1 0 0 . 2
0 . 1 0 . 5 0

0 0 0 . 5

A = [1.05,0.05,0.05;0.05,1.05,0.05;0,0.05,1.05];
B = [0.1,0,0.2;0.1,0.5,0;0,0,0.5];

The quadratic cost matrices are:

Q =
10 3 1
3 5 4
1 4 9

R =
0 . 5 0 0

0 0 . 5 0
0 0 0 . 5

Q = [10,3,1;3,5,4;1,4,9];
R = 0.5*eye(3);

For this environment, the reward at time t is given by rt = − xt′Qxt − ut′Rut, which is the negative of
the quadratic cost. Therefore, maximizing the reward minimizes the cost. The initial conditions are
set randomly by the reset function.

Create the MATLAB environment interface for this linear system and reward. The myDiscreteEnv
function creates an environment by defining custom step and reset functions. For more information
on creating such a custom environment, see “Create MATLAB Environment Using Custom Functions”
on page 2-33.

env = myDiscreteEnv(A,B,Q,R);

 Train Custom LQR Agent

5-227

Fix the random generator seed for reproducibility.

rng(0)

Create Custom LQR Agent

For the LQR problem, the Q-function for a given control gain K can be defined as QK x, u =
x
u

′HK
x
u

,

where HK =
Hxx Hxu
Hux Huu

 is a symmetric, positive definite matrix.

The control law to maximize QK is u = − Huu
−1Hux x, and the feedback gain is K = Huu

−1Hux .

The matrix HK contains m = 1
2n n + 1 distinct element values, where n is the sum of the number of

states and number of inputs. Denote θ as the vector corresponding to these m elements, where the
off-diagonal elements in HK are multiplied by two.

Represent the Q-function by θ, where θ contains the parameters to be learned.

QK x, u = θ′ K ϕ x, u , where ϕ x, u is the quadratic basis function in terms of x and u.

The LQR agent starts with a stabilizing controller K0. To get an initial stabilizing controller, place the
poles of the closed-loop system A− BK0 inside the unit circle.

K0 = place(A,B,[0.4,0.8,0.5]);

To create a custom agent, you must create a subclass of the rl.agent.CustomAgent abstract class.
For the custom LQR agent, the defined custom subclass is LQRCustomAgent. For more information,
see “Custom Agents” on page 3-37. Create the custom LQR agent using Q, R, and K0. The agent does
not require information on the system matrices A and B.

agent = LQRCustomAgent(Q,R,K0);

For this example, set the agent discount factor to one. To use a discounted future reward, set the
discount factor to a value less than one.

agent.Gamma = 1;

Because the linear system has three states and three inputs, the total number of learnable
parameters is m = 21. To ensure satisfactory performance of the agent, set the number of parameter
estimates Np to be greater than twice the number of learnable parameters. In this example, the value
is Np = 45.

agent.EstimateNum = 45;

To get good estimation results for θ, you must apply a persistently excited exploration model to the
system. In this example, encourage model exploration by adding white noise to the controller output:
ut = − Kxt + et. In general, the exploration model depends on the system models.

Train Agent

To train the agent, first specify the training options. For this example, use the following options.

5 Train and Validate Agents

5-228

• Run each training episode for at most 10 episodes, with each episode lasting at most 50 time
steps.

• Display the command line display (set the Verbose option) and disable the training progress in
the Episode Manager dialog box (set the Plots option).

For more information, see rlTrainingOptions.

trainingOpts = rlTrainingOptions(...
 'MaxEpisodes',10, ...
 'MaxStepsPerEpisode',50, ...
 'Verbose',true, ...
 'Plots','none');

Train the agent using the train function.

trainingStats = train(agent,env,trainingOpts);

Episode: 1/ 10 | Episode Reward : -55.16 | Episode Steps: 50 | Avg Reward : -55.16 | Step Count : 50
Episode: 2/ 10 | Episode Reward : -12.52 | Episode Steps: 50 | Avg Reward : -33.84 | Step Count : 100
Episode: 3/ 10 | Episode Reward : -15.59 | Episode Steps: 50 | Avg Reward : -27.76 | Step Count : 150
Episode: 4/ 10 | Episode Reward : -22.22 | Episode Steps: 50 | Avg Reward : -26.37 | Step Count : 200
Episode: 5/ 10 | Episode Reward : -14.32 | Episode Steps: 50 | Avg Reward : -23.96 | Step Count : 250
Episode: 6/ 10 | Episode Reward : -19.23 | Episode Steps: 50 | Avg Reward : -16.78 | Step Count : 300
Episode: 7/ 10 | Episode Reward : -34.14 | Episode Steps: 50 | Avg Reward : -21.10 | Step Count : 350
Episode: 8/ 10 | Episode Reward : -13.95 | Episode Steps: 50 | Avg Reward : -20.77 | Step Count : 400
Episode: 9/ 10 | Episode Reward : -36.01 | Episode Steps: 50 | Avg Reward : -23.53 | Step Count : 450
Episode: 10/ 10 | Episode Reward : -12.43 | Episode Steps: 50 | Avg Reward : -23.15 | Step Count : 500

Simulate Agent and Compare with Optimal Solution

To validate the performance of the trained agent, simulate it within the MATLAB environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOptions = rlSimulationOptions('MaxSteps',20);
experience = sim(env,agent,simOptions);
totalReward = sum(experience.Reward)

totalReward = -20.1306

You can compute the optimal solution for the LQR problem using the dlqr function.

[Koptimal,P] = dlqr(A,B,Q,R);

The optimal reward is given by Joptimal = −x0′Px0.

x0 = experience.Observation.obs1.getdatasamples(1);
Joptimal = -x0'*P*x0;

Compute the error in the reward between the trained LQR agent and the optimal LQR solution.

rewardError = totalReward - Joptimal

rewardError = 1.5270e-06

View the history of the 2-norm of error in the gains between the trained LQR agent and the optimal
LQR solution.

% number of gain updates
len = agent.KUpdate;

 Train Custom LQR Agent

5-229

err = zeros(len,1);
for i = 1:len
 % norm of error in the gain
 err(i) = norm(agent.KBuffer{i}-Koptimal);
end
plot(err,'b*-')

Compute the norm of final error for the feedback gain.

gainError = norm(agent.K - Koptimal)

gainError = 4.1670e-11

Overall, the trained agent finds an LQR solution that is close to the true optimal LQR solution.

See Also
train

More About
• “Custom Agents” on page 3-37
• “Train Reinforcement Learning Agents” on page 5-2

5 Train and Validate Agents

5-230

Train Reinforcement Learning Policy Using Custom Training
Loop

This example shows how to define a custom training loop for a reinforcement learning policy. You can
use this workflow to train reinforcement learning policies with your own custom training algorithms
rather than using one of the built-in agents from the Reinforcement Learning Toolbox™ software.

Using this workflow, you can train policies that use any of the following policy and value function
representations.

• rlStochasticActorRepresentation — Stochastic actor representation
• rlDeterministicActorRepresentation — Deterministic actor representation
• rlValueRepresentation — Value function critic representation
• rlQValueRepresentation — Q-Value function critic representation

In this example, a stochastic actor policy with a discrete action space is trained using the
REINFORCE algorithm (with no baseline). For more information on the REINFORCE algorithm, see
“Policy Gradient Agents” on page 3-13.

Fix the random generator seed for reproducibility.

rng(0)

For more information on the functions you can use for custom training, see Functions for Custom
Training on page 5-0 .

Environment

For this example, a reinforcement learning policy is trained in a discrete cart-pole environment. The
objective in this environment is to balance the pole by applying forces (actions) on the cart. Create
the environment using the rlPredefinedEnv function.

env = rlPredefinedEnv('CartPole-Discrete');

Extract the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations (numObs) and actions (numAct).

numObs = obsInfo.Dimension(1);
numAct = actInfo.Dimension(1);

For more information on this environment, see “Load Predefined Control System Environments” on
page 2-15.

Policy

The reinforcement learning policy in this example is a discrete-action stochastic policy. It is
represented by a deep neural network that contains fullyConnectedLayer, reluLayer, and
softmaxLayer layers. This network outputs probabilities for each discrete action given the current
observations. The softmaxLayer ensures that the representation outputs probability values in the
range [0 1] and that all probabilities sum to 1.

 Train Reinforcement Learning Policy Using Custom Training Loop

5-231

Create the deep neural network for the actor.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(24,'Name','fc2')
 reluLayer('Name','relu2')
 fullyConnectedLayer(2,'Name','output')
 softmaxLayer('Name','actionProb')];

Create the actor representation using an rlStochasticActorRepresentation object.

actorOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,...
 obsInfo,actInfo,'Observation','state',actorOpts);

For this example, the loss function for the policy is implemented in actorLossFunction on page 5-
0 .

Set the loss function using the setLoss function.

actor = setLoss(actor,@actorLossFunction);

Training Setup

Configure the training to use the following options:

• Set up the training to last at most 5000 episodes, with each episode lasting at most 250 steps.
• To calculate the discounted reward, choose a discount factor of 0.995.
• Terminate the training after the maximum number of episodes is reached or when the average

reward across 100 episodes reaches the value of 220.

numEpisodes = 5000;
maxStepsPerEpisode = 250;
discountFactor = 0.995;
aveWindowSize = 100;
trainingTerminationValue = 220;

Create a vector for storing the cumulative reward for each training episode.

episodeCumulativeRewardVector = [];

Create a figure for training visualization using the hBuildFigure on page 5-0 helper function.

[trainingPlot,lineReward,lineAveReward] = hBuildFigure;

Custom Training loop

The algorithm for the custom training loop is as follows. For each episode:

1 Reset the environment.
2 Create buffers for storing experience information: observations, actions, and rewards.
3 Generate experiences until a terminal condition occurs. To do so, evaluate the policy to get

actions, apply those actions to the environment, and obtain the resulting observations and
rewards. Store the actions, observations, and rewards in buffers.

4 Collect the training data as a batch of experiences.

5 Train and Validate Agents

5-232

5 Compute the episode Monte Carlo return, which is the discounted future reward.
6 Compute the gradient of the loss function with respect to the policy representation parameters.
7 Update the actor representation using the computed gradients.
8 Update the training visualization.
9 Terminate training if the policy is sufficiently trained.

% Enable the training visualization plot.
set(trainingPlot,'Visible','on');

% Train the policy for the maximum number of episodes or until the average
% reward indicates that the policy is sufficiently trained.
for episodeCt = 1:numEpisodes

 % 1. Reset the environment at the start of the episode
 obs = reset(env);

 episodeReward = zeros(maxStepsPerEpisode,1);

 % 2. Create buffers to store experiences. The dimensions for each buffer
 % must be as follows.
 %
 % For observation buffer:
 % numberOfObservations x numberOfObservationChannels x batchSize
 %
 % For action buffer:
 % numberOfActions x numberOfActionChannels x batchSize
 %
 % For reward buffer:
 % 1 x batchSize
 %
 observationBuffer = zeros(numObs,1,maxStepsPerEpisode);
 actionBuffer = zeros(numAct,1,maxStepsPerEpisode);
 rewardBuffer = zeros(1,maxStepsPerEpisode);

 % 3. Generate experiences for the maximum number of steps per
 % episode or until a terminal condition is reached.
 for stepCt = 1:maxStepsPerEpisode

 % Compute an action using the policy based on the current
 % observation.
 action = getAction(actor,{obs});

 % Apply the action to the environment and obtain the resulting
 % observation and reward.
 [nextObs,reward,isdone] = step(env,action{1});

 % Store the action, observation, and reward experiences in buffers.
 observationBuffer(:,:,stepCt) = obs;
 actionBuffer(:,:,stepCt) = action{1};
 rewardBuffer(:,stepCt) = reward;

 episodeReward(stepCt) = reward;
 obs = nextObs;

 % Stop if a terminal condition is reached.
 if isdone

 Train Reinforcement Learning Policy Using Custom Training Loop

5-233

 break;
 end

 end

 % 4. Create training data. Training is performed using batch data. The
 % batch size equal to the length of the episode.
 batchSize = min(stepCt,maxStepsPerEpisode);
 observationBatch = observationBuffer(:,:,1:batchSize);
 actionBatch = actionBuffer(:,:,1:batchSize);
 rewardBatch = rewardBuffer(:,1:batchSize);

 % Compute the discounted future reward.
 discountedReturn = zeros(1,batchSize);
 for t = 1:batchSize
 G = 0;
 for k = t:batchSize
 G = G + discountFactor ^ (k-t) * rewardBatch(k);
 end
 discountedReturn(t) = G;
 end

 % 5. Organize data to pass to the loss function.
 lossData.batchSize = batchSize;
 lossData.actInfo = actInfo;
 lossData.actionBatch = actionBatch;
 lossData.discountedReturn = discountedReturn;

 % 6. Compute the gradient of the loss with respect to the policy
 % parameters.
 actorGradient = gradient(actor,'loss-parameters',...
 {observationBatch},lossData);

 % 7. Update the actor network using the computed gradients.
 actor = optimize(actor,actorGradient);

 % 8. Update the training visualization.
 episodeCumulativeReward = sum(episodeReward);
 episodeCumulativeRewardVector = cat(2,...
 episodeCumulativeRewardVector,episodeCumulativeReward);
 movingAveReward = movmean(episodeCumulativeRewardVector,...
 aveWindowSize,2);
 addpoints(lineReward,episodeCt,episodeCumulativeReward);
 addpoints(lineAveReward,episodeCt,movingAveReward(end));
 drawnow;

 % 9. Terminate training if the network is sufficiently trained.
 if max(movingAveReward) > trainingTerminationValue
 break
 end

end

5 Train and Validate Agents

5-234

Simulation

After training, simulate the trained policy.

Before simulation, reset the environment.

obs = reset(env);

Enable the environment visualization, which is updated each time the environment step function is
called.

plot(env)

For each simulation step, perform the following actions.

1 Get the action by sampling from the policy using the getAction function.
2 Step the environment using the obtained action value.
3 Terminate if a terminal condition is reached.

for stepCt = 1:maxStepsPerEpisode

 % Select action according to trained policy
 action = getAction(actor,{obs});

 Train Reinforcement Learning Policy Using Custom Training Loop

5-235

 % Step the environment
 [nextObs,reward,isdone] = step(env,action{1});

 % Check for terminal condition
 if isdone
 break
 end

 obs = nextObs;

end

Functions for Custom Training

To obtain actions and value functions for given observations from Reinforcement Learning Toolbox
policy and value function representations, you can use the following functions.

• getValue — Obtain the estimated state value or state-action value function.
• getAction — Obtain the action from an actor representation based on the current observation.
• getMaxQValue — Obtain the estimated maximum state-action value function for a discrete Q-

value representation.

If your policy or value function representation is a recurrent neural network, that is, a neural network
with at least one layer that has hidden state information, the preceding functions can return the
current network state. You can use the following function syntaxes to get and set the state of your
representation.

• state = getState(rep) — Obtain the state of representation rep.
• newRep = setState(oldRep,state) — Set the state of representation oldRep, and return the

result in oldRep.
• newRep = resetState(oldRep) — Reset all state values of oldRep to zero and return the

result in newRep.

You can get and set the learnable parameters of your representation using the
getLearnableParameters and setLearnableParameters function, respectively.

5 Train and Validate Agents

5-236

In addition to these functions, you can use the setLoss, gradient, optimize, and
syncParameters functions to set parameters and compute gradients for your policy and value
function representations.

setLoss

The policy is trained in a stochastic gradient ascent manner where the gradients of a loss function is
used to update the network. For custom training, you can set the loss function using the setLoss
function. To do so, use the following syntax.

newRep = setLoss(oldRep,lossFcn)

Here:

• oldRep is a policy or value function representation object.
• lossFcn is the name of a custom loss function or a handle to a custom loss function.
• newRep is equivalent to oldRep, except that the loss function has been added to the

representation.

gradient

The gradient function computes the gradients of the representation loss function. You can compute
several different gradients. For example, to compute the gradient of the representation outputs with
respect to its inputs, use the following syntax.

grad = gradient(rep,"output-input",inputData)

Here:

• rep is a policy or value function representation object.
• inputData contains values for the input channels to the representation.
• grad contains the computed gradients.

For more information, at the MATLAB command line, type help
rl.representation.rlAbstractRepresentation.gradient.

optimize

The optimize function updates the learnable parameters of the representation based on computed
gradients. To update the parameters the gradients, use the following syntax.

newRep = optimize(oldRep,grad)

Here, oldRep is a policy or value function representation object and grad contains gradients
computed using the gradient function. newRep has the same structure as oldRep, but its
parameters are updated.

syncParameters

The syncParameters function updates the learnable parameters of one policy or value function
representation based on those of another representation. This function is useful for updating a target
actor or critic representation, as is done for DDPG agents. To synchronize parameters values between
two representations, use the following syntax.

newTargetRep = syncParameters(oldTargetRep,sourceRep,smoothFactor)

 Train Reinforcement Learning Policy Using Custom Training Loop

5-237

Here:

• oldTargetRep is a policy or value function representation object with parameters θold.

• sourceRep is a policy or value function representation object with the same structure as
oldTargetRep, but with parameters θsource.

• smoothFactor is a smoothing factor (τ) for the update.
• newTargetRep has the same structure as oldRep, but its parameters are

θnew = τθsource + 1 − τ θold.

Loss Function

The loss function in the REINFORCE algorithm is the product of the discounted reward and the log of
the policy, summed across all time steps. The discounted reward calculated in the custom training
loop must be resized to make it compatible for multiplication with the policy.

function loss = actorLossFunction(policy, lossData)

 % Create the action indication matrix.
 batchSize = lossData.batchSize;
 Z = repmat(lossData.actInfo.Elements',1,batchSize);
 actionIndicationMatrix = lossData.actionBatch(:,:) == Z;

 % Resize the discounted return to the size of policy.
 G = actionIndicationMatrix .* lossData.discountedReturn;
 G = reshape(G,size(policy));

 % Round any policy values less than eps to eps.
 policy(policy < eps) = eps;

 % Compute the loss.
 loss = -sum(G .* log(policy),'all');

end

Helper Function

The following helper function creates a figure for training visualization.

function [trainingPlot, lineReward, lineAveReward] = hBuildFigure()
 plotRatio = 16/9;
 trainingPlot = figure(...
 'Visible','off',...
 'HandleVisibility','off', ...
 'NumberTitle','off',...
 'Name','Cart Pole Custom Training');
 trainingPlot.Position(3) = plotRatio * trainingPlot.Position(4);

 ax = gca(trainingPlot);

 lineReward = animatedline(ax);
 lineAveReward = animatedline(ax,'Color','r','LineWidth',3);
 xlabel(ax,'Episode');
 ylabel(ax,'Reward');
 legend(ax,'Cumulative Reward','Average Reward','Location','northwest')

5 Train and Validate Agents

5-238

 title(ax,'Training Progress');
end

See Also
train

More About
• “Custom Agents” on page 3-37
• “Train Reinforcement Learning Agents” on page 5-2

 Train Reinforcement Learning Policy Using Custom Training Loop

5-239

Create Agent for Custom Reinforcement Learning Algorithm
This example shows how to create a custom agent for your own custom reinforcement learning
algorithm. Doing so allows you to leverage the following built-in functionality from the Reinforcement
Learning Toolbox™ software.

• Access to all agent functions, including train and sim
• Visualize training progress using the Episode Manager
• Train agents within a Simulink® environment

In this example, you convert a custom REINFORCE training loop into a custom agent class. For more
information on the REINFORCE custom train loop, see “Train Reinforcement Learning Policy Using
Custom Training Loop” on page 5-231. For more information on writing custom agent classes, see
“Custom Agents” on page 3-37.

Fix the random generator seed for reproducibility.

rng(0)

Create Environment

Create the same training environment used in the “Train Reinforcement Learning Policy Using
Custom Training Loop” on page 5-231 example. The environment is a cart-pole balancing
environment with a discrete action space. Create the environment using the rlPredefinedEnv
function.

env = rlPredefinedEnv('CartPole-Discrete');

Extract the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations (numObs) and actions (numAct).

numObs = obsInfo.Dimension(1);
numAct = numel(actInfo.Elements);

For more information on this environment, see “Load Predefined Control System Environments” on
page 2-15.

Define Policy

The reinforcement learning policy in this example is a discrete-action stochastic policy. It is
represented by a deep neural network that contains fullyConnectedLayer, reluLayer, and
softmaxLayer layers. This network outputs probabilities for each discrete action given the current
observations. The softmaxLayer ensures that the representation outputs probability values in the
range [0 1] and that all probabilities sum to 1.

Create the deep neural network for the actor.

actorNetwork = [featureInputLayer(numObs,'Normalization','none','Name','state')
 fullyConnectedLayer(24,'Name','fc1')
 reluLayer('Name','relu1')
 fullyConnectedLayer(24,'Name','fc2')

5 Train and Validate Agents

5-240

 reluLayer('Name','relu2')
 fullyConnectedLayer(2,'Name','output')
 softmaxLayer('Name','actionProb')];

Create the actor representation using an rlStochasticActorRepresentation object.

actorOpts = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,...
 obsInfo,actInfo,'Observation','state',actorOpts);

Custom Agent Class

To define your custom agent, first create a class that is a subclass of the rl.agent.CustomAgent
class. The custom agent class for this example is defined in CustomReinforceAgent.m.

The CustomReinforceAgent class has the following class definition, which indicates the agent class
name and the associated abstract agent.

classdef CustomReinforceAgent < rl.agent.CustomAgent

To define your agent you must specify the following:

• Agent properties
• Constructor function
• Critic representation that estimates the discounted long-term reward (if required for learning)
• Actor representation that selects an action based on the current observation (if required for

learning)
• Required agent methods
• Optional agent methods

Agent Properties

In the properties section of the class file, specify any parameters necessary for creating and
training the agent.

The rl.Agent.CustomAgent class already includes properties for the agent sample time
(SampleTime) and the action and observation specifications (ActionInfo and ObservationInfo,
respectively).

The custom REINFORCE agent defines the following additional agent properties.

properties
 % Actor representation
 Actor

 % Agent options
 Options

 % Experience buffer
 ObservationBuffer
 ActionBuffer
 RewardBuffer
end

properties (Access = private)

 Create Agent for Custom Reinforcement Learning Algorithm

5-241

 % Training utilities
 Counter
 NumObservation
 NumAction
end

Constructor Function

To create your custom agent, you must define a constructor function. The constructor function
performs the following actions.

• Defines the action and observation specifications. For more information about creating these
specifications, see rlNumericSpec and rlFiniteSetSpec.

• Sets the agent properties.
• Calls the constructor of the base abstract class.
• Defines the sample time (required for training in Simulink environments).

For example, the CustomREINFORCEAgent constructor defines action and observation spaces based
on the input actor representation.

function obj = CustomReinforceAgent(Actor,Options)
 %CUSTOMREINFORCEAGENT Construct custom agent
 % AGENT = CUSTOMREINFORCEAGENT(ACTOR,OPTIONS) creates custom
 % REINFORCE AGENT from rlStochasticActorRepresentation ACTOR
 % and structure OPTIONS. OPTIONS has fields:
 % - DiscountFactor
 % - MaxStepsPerEpisode

 % (required) Call the abstract class constructor.
 obj = obj@rl.agent.CustomAgent();
 obj.ObservationInfo = Actor.ObservationInfo;
 obj.ActionInfo = Actor.ActionInfo;

 % (required for Simulink environment) Register sample time.
 % For MATLAB environment, use -1.
 obj.SampleTime = -1;

 % (optional) Register actor and agent options.
 Actor = setLoss(Actor,@lossFunction);
 obj.Actor = Actor;
 obj.Options = Options;

 % (optional) Cache the number of observations and actions.
 obj.NumObservation = prod(obj.ObservationInfo.Dimension);
 obj.NumAction = prod(obj.ActionInfo.Dimension);

 % (optional) Initialize buffer and counter.
 reset(obj);
end

The constructor sets the loss function of the actor representation using a function handle to
lossFunction, which is implemented as a local function in CustomREINFORCEAgent.m.

function loss = lossFunction(policy,lossData)

 % Create the action indication matrix.

5 Train and Validate Agents

5-242

 batchSize = lossData.batchSize;
 Z = repmat(lossData.actInfo.Elements',1,batchSize);
 actionIndicationMatrix = lossData.actionBatch(:,:) == Z;

 % Resize the discounted return to the size of policy.
 G = actionIndicationMatrix .* lossData.discountedReturn;
 G = reshape(G,size(policy));

 % Round any policy values less than eps to eps.
 policy(policy < eps) = eps;

 % Compute the loss.
 loss = -sum(G .* log(policy),'all');

end

Required Functions

To create a custom reinforcement learning agent you must define the following implementation
functions.

• getActionImpl — Evaluate agent policy and select an agent during simulation.
• getActionWithExplorationImpl — Evaluate policy and select an action with exploration

during training.
• learnImpl — How the agent learns from the current experience

To call these functions in your own code, use the wrapper methods from the abstract base class. For
example, to call getActionImpl, use getAction. The wrapper methods have the same input and
output arguments as the implementation methods.

getActionImpl Function

The getActionImpl function is used to evaluate the policy of your agent and select an action when
simulating the agent using the sim function. This function must have the following signature, where
obj is the agent object, Observation is the current observation, and Action is the selected action.

function Action = getActionImpl(obj,Observation)

For the custom REINFORCE agent, you select an action by calling the getAction function for the
actor representation. The discrete rlStochasticActorRepresentation generates a discrete
distribution from an observation and samples an action from this distribution.

function Action = getActionImpl(obj,Observation)
 % Compute an action using the policy given the current
 % observation.

 Action = getAction(obj.Actor,Observation);
end

getActionWithExplorationImpl Function

The getActionWithExplorationImpl function selects an action using the exploration model of
your agent when training the agent using the train function. Using this function you can implement
exploration techniques such as epsilon-greedy exploration or the addition of Gaussian noise. This
function must have the following signature, where obj is the agent object, Observation is the
current observation, and Action is the selected action.

 Create Agent for Custom Reinforcement Learning Algorithm

5-243

function Action = getActionWithExplorationImpl(obj,Observation)

For the custom REINFORCE agent, the getActionWithExplorationImpl function is the same as
getActionImpl. By default, stochastic actors always explore, that is, they always select an action
based on a probability distribution.

function Action = getActionWithExplorationImpl(obj,Observation)
 % Compute an action using the exploration policy given the
 % current observation.

 % REINFORCE: Stochastic actors always explore by default
 % (sample from a probability distribution)
 Action = getAction(obj.Actor,Observation);
end

learnImpl Function

The learnImpl function defines how the agent learns from the current experience. This function
implements the custom learning algorithm of your agent by updating the policy parameters and
selecting an action with exploration for the next state. This function must have the following
signature, where obj is the agent object, Experience is the current agent experience, and Action
is the selected action.

function Action = learnImpl(obj,Experience)

The agent experience is the cell array Experience =
{state,action,reward,nextstate,isdone}. Here:

• state is the current observation.
• action is the current action. This is different from the output argument Action, which is an

action for the next state.
• reward is the current reward.
• nextState is the next observation.
• isDone is a logical flag indicating that the training episode is complete.

For the custom REINFORCE agent, replicate steps 2 through 7 of the custom training loop in “Train
Reinforcement Learning Policy Using Custom Training Loop” on page 5-231. You omit steps 1, 8, and
9 since you will use the built-in train function to train your agent.

function Action = learnImpl(obj,Experience)
 % Define how the agent learns from an Experience, which is a
 % cell array with the following format.
 % Experience = {observation,action,reward,nextObservation,isDone}

 % Reset buffer at the beginning of the episode.
 if obj.Counter < 2
 resetBuffer(obj);
 end

 % Extract data from experience.
 Obs = Experience{1};
 Action = Experience{2};
 Reward = Experience{3};
 NextObs = Experience{4};
 IsDone = Experience{5};

5 Train and Validate Agents

5-244

 % Save data to buffer.
 obj.ObservationBuffer(:,:,obj.Counter) = Obs{1};
 obj.ActionBuffer(:,:,obj.Counter) = Action{1};
 obj.RewardBuffer(:,obj.Counter) = Reward;

 if ~IsDone
 % Choose an action for the next state.

 Action = getActionWithExplorationImpl(obj, NextObs);
 obj.Counter = obj.Counter + 1;
 else
 % Learn from episodic data.

 % Collect data from the buffer.
 BatchSize = min(obj.Counter,obj.Options.MaxStepsPerEpisode);
 ObservationBatch = obj.ObservationBuffer(:,:,1:BatchSize);
 ActionBatch = obj.ActionBuffer(:,:,1:BatchSize);
 RewardBatch = obj.RewardBuffer(:,1:BatchSize);

 % Compute the discounted future reward.
 DiscountedReturn = zeros(1,BatchSize);
 for t = 1:BatchSize
 G = 0;
 for k = t:BatchSize
 G = G + obj.Options.DiscountFactor ^ (k-t) * RewardBatch(k);
 end
 DiscountedReturn(t) = G;
 end

 % Organize data to pass to the loss function.
 LossData.batchSize = BatchSize;
 LossData.actInfo = obj.ActionInfo;
 LossData.actionBatch = ActionBatch;
 LossData.discountedReturn = DiscountedReturn;

 % Compute the gradient of the loss with respect to the
 % actor parameters.
 ActorGradient = gradient(obj.Actor,'loss-parameters',...
 {ObservationBatch},LossData);

 % Update the actor parameters using the computed gradients.
 obj.Actor = optimize(obj.Actor,ActorGradient);

 % Reset the counter.
 obj.Counter = 1;
 end
end

Optional Functions

Optionally, you can define how your agent is reset at the start of training by specifying a resetImpl
function with the following function signature, where obj is the agent object.

function resetImpl(obj)

Using this function, you can set the agent into a know or random condition before training.

 Create Agent for Custom Reinforcement Learning Algorithm

5-245

function resetImpl(obj)
 % (Optional) Define how the agent is reset before training/

 resetBuffer(obj);
 obj.Counter = 1;
end

Also, you can define any other helper functions in your custom agent class as required. For example,
the custom REINFORCE agent defines a resetBuffer function for reinitializing the experience
buffer at the beginning of each training episode.

function resetBuffer(obj)
 % Reinitialize all experience buffers.

 obj.ObservationBuffer = zeros(obj.NumObservation,1,obj.Options.MaxStepsPerEpisode);
 obj.ActionBuffer = zeros(obj.NumAction,1,obj.Options.MaxStepsPerEpisode);
 obj.RewardBuffer = zeros(1,obj.Options.MaxStepsPerEpisode);
end

Create Custom Agent

Once you have defined your custom agent class, create an instance of it in the MATLAB workspace.
To create the custom REINFORCE agent, first specify the agent options.

options.MaxStepsPerEpisode = 250;
options.DiscountFactor = 0.995;

Then, using the options and the previously defined actor representation, call the custom agent
constructor function.

agent = CustomReinforceAgent(actor,options);

Train Custom Agent

Configure the training to use the following options.

• Set up the training to last at most 5000 episodes, with each episode lasting at most 250 steps.
• Terminate the training after the maximum number of episodes is reached or when the average

reward across 100 episodes reaches a value of 240.

For more information, see rlTrainingOptions.

numEpisodes = 5000;
aveWindowSize = 100;
trainingTerminationValue = 240;
trainOpts = rlTrainingOptions(...
 'MaxEpisodes',numEpisodes,...
 'MaxStepsPerEpisode',options.MaxStepsPerEpisode,...
 'ScoreAveragingWindowLength',aveWindowSize,...
 'StopTrainingValue',trainingTerminationValue);

Train the agent using the train function. Training this agent is a computationally intensive process
that takes several minutes to complete. To save time while running this example, load a pretrained
agent by setting doTraining to false. To train the agent yourself, set doTraining to true.

doTraining = false;
if doTraining
 % Train the agent.

5 Train and Validate Agents

5-246

 trainStats = train(agent,env,trainOpts);
else
 % Load pretrained agent for the example.
 load('CustomReinforce.mat','agent');
end

Simulate Custom Agent

Enable the environment visualization, which is updated each time the environment step function is
called.

plot(env)

To validate the performance of the trained agent, simulate it within the cart-pole environment. For
more information on agent simulation, see rlSimulationOptions and sim.

simOpts = rlSimulationOptions('MaxSteps',options.MaxStepsPerEpisode);
experience = sim(env,agent,simOpts);

 Create Agent for Custom Reinforcement Learning Algorithm

5-247

See Also
train

More About
• “Custom Agents” on page 3-37
• “Train Reinforcement Learning Agents” on page 5-2

5 Train and Validate Agents

5-248

Deploy Trained Policies

6

Deploy Trained Reinforcement Learning Policies
Once you train a reinforcement learning agent, you can generate code to deploy the optimal policy.
You can generate:

• CUDA® code for deep neural network policies using GPU Coder
• C/C++ code for table, deep neural network, or linear basis function policies using MATLAB Coder

Note Code generation for deep neural network policies supports only networks with a single input
layer.

For more information on training reinforcement learning agents, see “Train Reinforcement Learning
Agents” on page 5-2.

To create a policy evaluation function that selects an action based on a given observation, use the
generatePolicyFunction command. This command generates a MATLAB script, which contains
the policy evaluation function, and a MAT-file, which contains the optimal policy data.

You can generate code to deploy this policy function using GPU Coder or MATLAB Coder.

Generate Code Using GPU Coder
If your trained optimal policy uses a deep neural network, you can generate CUDA code for the policy
using GPU Coder. There are several required and recommended prerequisite products for generating
CUDA code for deep neural networks. For more information, see “Installing Prerequisite Products”
(GPU Coder) and “Setting Up the Prerequisite Products” (GPU Coder).

Not all deep neural network layers support GPU code generation. For a list of supported layers, see
“Supported Networks and Layers” (GPU Coder). For more information and examples on GPU code
generation, see “Deep Learning with GPU Coder” (GPU Coder).

Generate CUDA Code for Deep Neural Network Policy

As an example, generate GPU code for the policy gradient agent trained in “Train PG Agent to
Balance Cart-Pole System” on page 5-14.

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor. For a given observation,
the policy function evaluates a probability for each potential action using the actor network. Then,
the policy function randomly selects an action based on these probabilities.

Since the actor network for this PG agent has a single input layer and single output layer, you can
generate code for this network using GPU Coder. For example, you can generate a CUDA compatible
MEX function.

6 Deploy Trained Policies

6-2

Configure the codegen function to create a CUDA compatible C++ MEX function.

cfg = coder.gpuConfig('mex');
cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('cudnn');

Set the dimensions of the policy evaluation input argument, which correspond to the observation
specification dimensions for the agent. To find the observation dimensions, use the
getObservationInfo function. In this case, the observations are in a four-element vector.

argstr = '{ones(4,1)}';

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');

This command generates the MEX function evaluatePolicy_mex.

Generate Code Using MATLAB Coder
You can generate C/C++ code for table, deep neural network, or linear basis function policies using
MATLAB Coder.

Using MATLAB Coder, you can generate:

• C/C++ code for policies that use Q tables, value tables, or linear basis functions. For more
information on general C/C++ code generation, see “Generating Code” (MATLAB Coder).

• C++ code for policies that use deep neural networks. For more information, see “Prerequisites for
Deep Learning with MATLAB Coder” (MATLAB Coder) and “Deep Learning with MATLAB Coder”
(MATLAB Coder).

Generate C++ Code for Deep Neural Network Policy

As an example, generate C code for the policy gradient agent trained in “Train PG Agent to Balance
Cart-Pole System” on page 5-14.

Load the trained agent.

load('MATLABCartpolePG.mat','agent')

Create a policy evaluation function for this agent.

generatePolicyFunction(agent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor. For a given observation,
the policy function evaluates a probability for each potential action using the actor network. Then,
the policy function randomly selects an action based on these probabilities.

Configure the codegen function to generate code suitable for targeting a static library.

cfg = coder.config('lib');

On the configuration object, set the target language to C++, and set DeepLearningConfig to the
target library 'mkldnn'. This option generates code using the Intel Math Kernel Library for Deep
Neural Networks (Intel MKL-DNN).

 Deploy Trained Reinforcement Learning Policies

6-3

cfg.TargetLang = 'C++';
cfg.DeepLearningConfig = coder.DeepLearningConfig('mkldnn');

Set the dimensions of the policy evaluation input argument, which correspond to the observation
specification dimensions for the agent. To find the observation dimensions, use the
getObservationInfo function. In this case, the observations are in a four-element vector.

argstr = '{ones(4,1)}';

Generate code using the codegen function.

codegen('-config','cfg','evaluatePolicy','-args',argstr,'-report');

This command generates the C++ code for the policy gradient agent containing the deep neural
network actor.

Generate C Code for Q Table Policy

As an example, generate C code for the Q-learning agent trained in “Train Reinforcement Learning
Agent in Basic Grid World” on page 1-8.

Load the trained agent.

load('basicGWQAgent.mat','qAgent')

Create a policy evaluation function for this agent.

generatePolicyFunction(qAgent)

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained Q table value function. For a given observation, the
policy function looks up the value function for each potential action using the Q table. Then, the
policy function selects the action for which the value function is greatest.

Set the dimensions of the policy evaluation input argument, which correspond to the observation
specification dimensions for the agent. To find the observation dimensions, use the
getObservationInfo function. In this case, there is a single finite observation.

argstr = '{[1]}';

Configure the codegen function to generate embeddable C code suitable for targeting a static
library, and set the output folder to buildFolder.

cfg = coder.config('lib');
outFolder = 'buildFolder';

Generate C code using the codegen function.

codegen('-c','-d',outFolder,'-config','cfg',...
 'evaluatePolicy','-args',argstr,'-report');

See Also
generatePolicyFunction

6 Deploy Trained Policies

6-4

More About
• “Reinforcement Learning Agents” on page 3-2
• “Train Reinforcement Learning Agents” on page 5-2

 Deploy Trained Reinforcement Learning Policies

6-5

	Getting Started
	Reinforcement Learning Toolbox Product Description
	What Is Reinforcement Learning?
	Reinforcement Learning Workflow

	Reinforcement Learning for Control Systems Applications
	Train Reinforcement Learning Agent in Basic Grid World
	Train Reinforcement Learning Agent in MDP Environment
	Create Simulink Environment and Train Agent

	Create Environments
	Create MATLAB Environments for Reinforcement Learning
	Action and Observation Signals
	Predefined MATLAB Environments
	Custom MATLAB Environments

	Create Simulink Environments for Reinforcement Learning
	Action and Observation Signals
	Predefined Simulink Environments
	Custom Simulink Environments

	Define Reward Signals
	Continuous Rewards
	Discrete Rewards
	Mixed Rewards

	Load Predefined Grid World Environments
	Basic Grid World
	Deterministic Waterfall Grid Worlds
	Stochastic Waterfall Grid Worlds

	Load Predefined Control System Environments
	Cart-Pole Environments
	Double Integrator Environments
	Simple Pendulum Environments with Image Observation

	Load Predefined Simulink Environments
	Simple Pendulum Simulink Model
	Cart-Pole Simscape Model

	Create Custom Grid World Environments
	Grid World Model
	Grid World Environment

	Create MATLAB Environment Using Custom Functions
	Create Custom MATLAB Environment from Template
	Create Template Class
	Environment Properties
	Required Functions
	Optional Functions
	Environment Visualization
	Create Custom Environment

	Water Tank Reinforcement Learning Environment Model

	Create Agents
	Reinforcement Learning Agents
	Built-In Agents
	Choose the Type of Agent
	Custom Agents

	Q-Learning Agents
	Critic Function
	Agent Creation
	Training Algorithm

	SARSA Agents
	Critic Function
	Agent Creation
	Training Algorithm

	Deep Q-Network Agents
	Critic Function
	Agent Creation
	Training Algorithm
	Target Update Methods

	Policy Gradient Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm

	Deep Deterministic Policy Gradient Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm
	Target Update Methods

	Twin-Delayed Deep Deterministic Policy Gradient Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm
	Target Update Methods

	Actor-Critic Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm

	Proximal Policy Optimization Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm

	Soft Actor-Critic Agents
	Actor and Critic Functions
	Agent Creation
	Training Algorithm
	Target Update Methods

	Custom Agents
	Create Template Class
	Agent Properties
	Constructor Function
	Actor and Critic Representations
	Required Functions
	Optional Functions
	Create Custom Agent

	Define Policies and Value Functions
	Create Policy and Value Function Representations
	Actors and Critic Representations
	Table Approximators
	Deep Neural Network Approximators
	Custom Basis Function Approximators
	Create an Agent or Specify Agent Representations

	Import Policy and Value Function Representations
	Import Actor and Critic for Image Observation Application

	Train and Validate Agents
	Train Reinforcement Learning Agents
	Training Algorithm
	Episode Manager
	Save Candidate Agents
	Parallel Computing
	GPU Acceleration
	Validate Trained Policy
	Environment Visualization

	Train DQN Agent to Balance Cart-Pole System
	Train PG Agent to Balance Cart-Pole System
	Train AC Agent to Balance Cart-Pole System
	Train PG Agent with Baseline to Control Double Integrator System
	Train DDPG Agent to Control Double Integrator System
	Train DQN Agent to Swing Up and Balance Pendulum
	Train DDPG Agent to Swing Up and Balance Pendulum
	Train DDPG Agent to Swing Up and Balance Cart-Pole System
	Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal
	Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation
	Create Agent Using Deep Network Designer and Train Using Image Observations
	Train AC Agent to Balance Cart-Pole System Using Parallel Computing
	Train DDPG Agent to Control Flying Robot
	Train PPO Agent to Land Rocket
	Train Multiple Agents to Perform Collaborative Task
	Train Multiple Agents for Area Coverage
	Train Multiple Agents for Path Following Control
	Train DDPG Agent for Adaptive Cruise Control
	Train DQN Agent for Lane Keeping Assist
	Train PPO Agent for Automatic Parking Valet
	Train DDPG Agent for Path-Following Control
	Train DQN Agent for Lane Keeping Assist Using Parallel Computing
	Train Biped Robot to Walk Using Reinforcement Learning Agents
	Quadruped Robot Locomotion Using DDPG Agent
	Train DDPG Agent for PMSM Control
	Imitate MPC Controller for Lane Keeping Assist
	Train DDPG Agent with Pretrained Actor Network
	Imitate Nonlinear MPC Controller for Flying Robot
	Tune PI Controller using Reinforcement Learning
	Train Custom LQR Agent
	Train Reinforcement Learning Policy Using Custom Training Loop
	Create Agent for Custom Reinforcement Learning Algorithm

	Deploy Trained Policies
	Deploy Trained Reinforcement Learning Policies
	Generate Code Using GPU Coder
	Generate Code Using MATLAB Coder

